@overfullrule=0pt
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
数式処理システム
asir
は OpenXM
プロトコル
(Open message eXchange for Mathematics, http://www.openxm.org)
をサポートしたサーバを
コンポーネントとして利用できる.
これらのサーバを呼ぶためのインタフェース関数はファイル
‘OpenXM/rc/asirrc’ をロードすることによりシステムに読み込まれる.
Risa/Asir (OpenXM 配布版) では起動時に自動的にこのファイルが読まれる.
Risa/Asir (OpenXM 配布版) は, このマニュアルでは
OpenXM/Risa/Asir
と呼ぶ.
このマニュアルでは asir
用のこれらの関数
およびユーザ言語で書かれた数学関数およびユーティリティ関数を説明する.
HEAD branch に同期した最新版の asir-contrib マニュアルは
http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/index-doc-ja.html
を参照.
OpenXM
プロトコルの技術的詳細については,
‘$(OpenXM_HOME)/doc/OpenXM-specs’ にあるファイル
‘openxm-jp.tex’
を見て下さい.
それでは, あなたの計算機上で数学をお楽しみ下さい.
List of contributors:
この Contrib パッケージの
著作権については, OpenXM/Copyright
を見て下さい.
有用だとおもいますが無保証です.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
‘OpenXM/rc/asirrc’
をロードすることにより Asir/Contrib の主な関数が利用可能となる.
OpenXM/Risa/Asir では ASIR_CONFIG
環境変数により
このファイルを起動時に読みこんでいる.
‘names.rr’ が Asir/Contrib のトップレベルのファイルである.
このファイルよりその他のファイルが読み込まれている.
一部のパッケージは ‘names.rr’ からは読み込まれないので,
明示的に読み込む必要がある.
A sample of ‘asirrc’ to use Asir/Contrib.
load("gr")$ load("primdec")$ load("katsura")$ load("bfct")$ load("names.rr")$ load("oxrfc103.rr")$ User_asirrc=which(getenv("HOME")+"/.asirrc")$ if (type(User_asirrc)!=0) { if (!ctrl("quiet_mode")) print("Loading ~/.asirrc")$ load(User_asirrc)$ else{ $ end$
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
Asir Contrib には
(1) 標準的な名前で定義された数学函数 (names.rr
および
(2) Asir 標準函数以外の有用なライブラリ函数
および
(3) OpenXM サーバを asir から呼ぶための函数
が含まれている.
Asir Contrib の函数名はモジュール化されているかまたは次の形をしている:
カテゴリ名_函数名
標準的な数学函数は実体へのラッパーである.
たとえば
sm1.hilbert
は OpenXM サーバ sm1
の
Hilbert 函数の計算函数を呼び出す函数である.
一方 poly_hilbert_polynomial
は Asir Contrib の
Hilbert 函数を計算するための (1) に属する標準的な函数名である.
標準函数 poly_hilbert_polynomial
は,
現在 sm1.hilbert
を呼び出して Hilbert 函数を計算しているが,
これは将来変更されるかもしれない.
たとえば, Asir 言語で記述された有用なライブラリ函数集
commutativeRing.rr
が開発されて
Hilbert 函数の計算函数
commutativeRing_hilbert_polynomial
が含まれるようになったら,
標準函数 poly_hilbert_polynomial
は,
commutativeRing_hilbert_polynomial
を呼び出して
Hilbert 函数を計算するようになるかもしれない.
したがって, ユーザプログラムは標準数学函数名を用いるのが望ましい.
標準数学函数名は, OpenXM project において, 全てのプロジェクトで共通の
仕様を持つように努力している.
たとえば, kan/k0 も Asir Contrib と同様の標準数学函数名を持つ
予定である.
現在実験的に数学函数のカテゴリ complex
複体 (複素数でない)
のマニュアルを kan/k0, asir/contrib で共通化を試みている.
以下の章は, 標準数学函数の解説をおこない, それから ライブラリ函数, それから, OpenXM サーバのインタフェースの説明を おこなう.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
Windows でも不完全ながら asir-contrib が動作する. 現在, 外部コンポーネント sm1 および, 外部 コンポーネント を利用しない asir-contrib の関数が動作する. Cygwin 環境では外部コンポーネント sm1, phc が動作する. その他の外部コンポーネントは動作しない.
次の関数は Windows では動作しない. Windows での cygwin 環境では動作する場合がある.
gnuplot.*
om.*
mathematica.*
phc.*
print_dvi_form
print_gif_form
print_open_math_xml_form
print_png_form
print_xdvi_form
print_xv_form
tigers_xv_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_cancel
: It simplifies S by canceling the common factors of denominators and numerators.
Example:
base_cancel([(x-1)/(x^2-1), (x-1)/(x^3-1)]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_choose
: It returns the list of the order M subsets of L.
Example:
base_choose([1,2,3],2);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_f_definedp
: returns 1 if the function Func is defined.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_flatten
: It flattens a nested list S.
Example:
base_flatten([[1,2,3],4]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_intersection
: It returns the intersection of A and B as a set.
Example:
base_intersection([1,2,3],[2,3,5,[6,5]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_is_asir2018
: returns 1 if the system is asir2018.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_is_equal
: returns 1 if the objects L1 and L2 are equal else return 0
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_ith
: It returns A[I].
Example:
R=[[x,10],[y,20]]; map(base_ith,R,0);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_makelist
: base_makelist generate a list from Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, T is ignored and K runs in B.
Example 0:
base_makelist(k^2,k,1,10);
Example 1:
map(print_input_form,base_makelist(quote(x^2),x,1,10 | qt=1, step=0.5))
Example 2:
base_makelist(quote("the "+k),k,["cat","dog"],0);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_memberq
: It returns 1 if A is a member of the set S else returns 0.
Example:
base_memberq(2,[1,2,3]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_permutation
: It outputs all permutations of L. BUG; it uses a slow algorithm.
Example:
base_permutation([1,2,3,4]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_position
: It returns the position of A in S.
Example:
base_position("cat",["dog","cat","monkey"]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_preplace
: It rewrites S by using the rule Rule. psubst is used instead of subst. The replacement is not performed for function arguments.
Example:
base_preplace(exp(x)+x^2,[[x,a+1],[exp(x),b]]);
x is replaced by a+1 and exp(x) is replaced by b in exp(x)+x^2.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_product
: base_product returns the product of Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, K runs in B and T is ignored.
Example 0:
base_product(k^2,k,1,10);
Example 1:
base_product(quote(x^2),x,1,10 | qt=1, step=0.5);
Example 2:
base_product(quote(x^2),x,[a,b,c],0 | qt=1);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_prune
: It returns a list in which A is removed from S.
Example:
base_prune("cat",["dog","cat","monkey"]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_range
: It returns a list numbers [Start, Start+Step, Start+2*Step, ..., Start+n*Step] where Start+n*Step < End <= Start+(n+1)*Step Default value of step is 1.
: This function allows optional variables step=Step
Example:
base_range(0,10);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_rebuild_opt
: It rebuilt the option list Opt
Example:
base_rebuild_opt([[key1,1],[key2,3]] | remove_keys=["key2"]);
it returns [[key1,1]]
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_replace
: It rewrites S by using the rule Rule
Example:
base_replace(x^2+y^2,[[x,a+1],[y,b]]);
x is replaced by a+1 and y is replaced by b in x^2+y^2.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_replace_n
: It rewrites S by using the rule Rule. It is used only for specializing variables to numbers and faster than base_replace.
Example:
base_replace_n(x^2+y^2,[[x,1/2],[y,2.0+3*@i]]);
x is replaced by 1/2 and y is replaced by 2.0+3*@i in x^2+y^2.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_rest
: It returns cdr(L).
Example:
R=[[x,10,30],[y,20,40]]; map(base_rest,R);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_set_intersection
:
Example:
base_set_intersection([1,2,3],[3,4,5]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_set_minus
:
Example:
base_set_minus([1,2,3],[3,4,5]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_set_union
:
Example:
base_set_union([1,2,3],[3,4,5]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_subsequenceq
: if A is a subsequence B, then it returns 1 else 0.
Example:
base_subsequence([3,2,5],[1,2,3,4,5]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_subsetq
:
Example:
base_subsetq([1,2],[1,2,3,4,5]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_subsets_of_size
: It outputs all subsets of S of the size K. BUG; it uses a slow algorithm. Do not input a large S.
Example:
base_subsets_of_size(2,[3,5,3,2]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_sum
: base_sum returns the sum of Obj where K runs in [B,T]. Options are qt=1 (keep quote data), step (step size). When B is a list, K runs in B and T is ignored. When K is 0, then Obj is assumed to be a list or vector and Obj[B]+...+Obj[T] is returned.
Example 0:
base_sum(k^2,k,1,10);
Example 1:
base_sum(quote(x^2),x,1,10 | qt=1, step=0.5);
Example 2:
base_sum(quote(x^2),x,[a,b,c],0 | qt=1);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
base_var_list
: base_var_list generate a list of variables Name+Index where Index runs on [B,T].
Example 0:
base_var_list(x,0,10);
Example 1:
base_var_list(x,1,4 | d = 1); Options are d=1 (add d before the name).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_abs
:
Example:
number_abs(-3);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_ceiling
:
Example:
number_abs(1.5);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_eval
:
Example:
number_eval([1/10^10,@pi,exp(1)]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_factor
: It factors the given integer X.
Example:
number_factor(20);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_float_to_rational
:
Example:
number_float_to_rational(1.5234); number_setprec(30); //About 30 digits after the decimal point. It also set setprec
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_floor
:
Example:
number_floor(1.5);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_imaginary_part
:
Example:
number_imaginary_part(1+2*@i);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_is_integer
:
Example:
number_is_integer(2/3);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_real_part
:
Example:
number_real_part(1+2*@i);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
number_setprec
: When X is 0, it returns the current value of precision.
Example:
number_setprec(30); number_float_to_rational(F) returns an approximation of F by a rational number with the accuracy about 30 digits after the decimal point. It also calls setprec(30);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
まだ書いてない.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_adjugate
: It generates the adjugate matrix of the matrix M.
Example:
matrix_adjugate(matrix_list_to_matrix([[a,b],[c,d]]));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_clone
: It generates the clone of the matrix M.
Example:
matrix_clone(matrix_list_to_matrix([[1,1],[0,1]]));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_det
: It returns the determinant of the matrix M.
Example:
poly_factor(matrix_det([[1,x,x^2],[1,y,y^2],[1,z,z^2]]));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_diagonal_matrix
: It returns the diagonal matrix with diagonal entries L.
Example:
matrix_diagonal_matrix([1,2,3]);
References:
matrix_list_to_matrix
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_eigenavalues
: It returns the eigenvalues of the matrix M. if the option num=1, it returns the numerical approximate eigenvalues.
Example:
matrix_eigenvalues([[x,1],[0,y]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_gauge_transformation
: It returns T^(-1) M T - T^(-1) dT/dV
Example:
matrix_gauge_transformation([[0,x],[1,x]],[[x,0],[0,1]],x);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_identity_matrix
: It returns the identity matrix of the size N.
Example:
matrix_identity_matrix(5);
References:
matrix_diagonal_matrix
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_ij
: It returns the matrix for exchanging II-th row(col) and JJ-th row(col).
Example:
matrix_ij(4,0,2);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_image
: It computes the image of M. Redundant vectors are removed.
Example:
matrix_image([[1,2,3],[2,4,6],[1,0,0]]);
References:
matrix_kernel
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_inner_product
: It returns the inner product of two vectors A and B.
Example:
matrix_inner_product([1,2],[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_inverse
: It returns the inverse of the matrix M.
Example:
matrix_inverse([[1,2],[0,1]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_inverse_singular
: It returns a quasi-inverse matrix of Mat when it has 0-row and 0-column.
Example:
matrix_inverse_singular(newmat(3,3,[[1,0,2],[0,0,0],[3,0,4]]));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_is_zero
: If it is 0 matrix or 0 vector or list consisting of 0, then it returns 1 else it returns 0.
Example:
matrix_is_zero(newmat(2,3));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_kernel
: It returns the basis of the kernel of the matrix M.
Example:
matrix_kernel([[1,1,1,1],[0,1,3,4]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_kronecker_product
: Kronecker product of the matrices A and B.
Example:
matrix_kronecker_product([[a11,a12],[a21,a22]],[[b11,b12],[b21,b22]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_list_to_matrix
: It translates the list M to a matrix.
Example:
print_xdvi_form(matrix_list_to_matrix([[1,1],[0,2]]));
References:
matrix_matrix_to_list
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_matrix_to_list
: It translates the matrix M to a list.
References:
matrix_list_to_matrix
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_ones
: It returns the vector [1 1 ... 1] of length N. When one=m, it returns [m m ... m]. When size=[p,q] is given, N is ignored and returns p by q matrix with entries 1.
: This function allows optional variables one=m, size=[p, q]
Example:
vtol(matrix_ones(3)); returns the list [1,1,1]
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_poly_to_matrix
: Replace variables in the polynomial Poly by matrices in the Rule.
Example:
matrix_poly_to_matrix(x^2-1,[[x,newmat(2,2,[[2,0],[0,3]])]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_rank
: It returns the rank of the matrix M.
Example:
matrix_rank([[1,1,1,1],[0,1,3,4]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_rank_ff
: It evaluates the rank of the matrix Mat by mod P. Entries may be rational numbers, and the inverse of the denominator D in F_P is properly computedd when P does not divide D, but the case P divides D does not raise an error.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_row_matrix
: It returns 1*n matrix [[L,L,...,L]] when L is a scalar. It returns 1*length(L) matrix [L].
: This function allows optional variables size=n
Example:
matrix_row_matrix(1 | size=5);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_solve_linear
: It solves the system of linear equations M X = B
Example:
matrix_solve_linear([[1,2],[0,1]],[x,y],[1,2]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_stack
: Stack the matrices A and B.
Example:
matrix_stack([[a11,a12],[a21,a22]],[[b11,b12],[b21,b22]]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_submatrix
: It returns the submatrix of M defined by the index set Ind.
Example:
matrix_submatrix([[0,1],[2,3],[4,5]],[1,2]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
matrix_transpose
: It returns the transpose of the matrix M.
References:
matrix_list_to_matrix
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
まだ書いてない.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_c_form
: It transforms S to the C format or python format string.
Example 0:
print_c_form(x^2+1);
Example 1:
print_c_form(x^2+1 | mode=python);
Example 2:
print_c_form(sin(x^2+1)/5 | mode=c);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_dvi_form
: It outputs S to a dvi file.
Example:
print_dvi_form(x^2-1);
References:
print_xdvi_form
,print_tex_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_em
: It outputs S by a font to emphasize it.
Example:
print_em(x^2-1);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_format
: It changes the list format of S. Options are list, sep. Defaults are list=["",""], sep=",".
Example 0:
print_format([1,[x,y^2]]);
Example 1:
print_format([1,[x,y^2]] | list=["(",")"], sep=" ");
Example 2:
print_format(print_c_form([1,[x,y^2]]) );
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_gif_form
: It outputs S to a file of the gif format.
: This function allows optional variables table
Example:
print_gif_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
References:
print_tex_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_input_form
: It transforms S to a string which can be parsed by asir.
Example:
print_input_form(quote(x^3-1));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_open_math_tfb_form
: It transforms S to a tfb format of OpenMath XML.
Description:
It is experimental. You need to load taka_print_tfb.rr to call it.
Example:
print_open_math_tfb_form(quote(f(x,1/(y+1))+2));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_open_math_xml_form
: It transforms S to a string which is compliant to OpenMath(1999).
Example:
print_open_math_xml_form(x^3-1);
References:
www.openmath.org
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_output
: It outputs the object Obj to a file. If the optional variable file is set, then it outputs the Obj to the specified file, else it outputs it to "asir_output_tmp.txt". If the optional variable mode is set to "w", then the file is newly created. If the optional variable is not set, the Obj is appended to the file.
: This function allows optional variables file, mode
Example:
print_output("Hello"|file="test.txt");
References:
glib_tops
,(
,)
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_ox_rfc100_xml_form
: It transforms S to a string which is compliant to OpenXM RFC 100.
Example:
print_ox_rfc100_xml_form(x^3-1);
References:
www.openxm.org
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_pdf_form
: It transforms S to a pdf file and previews the file.
Example 0:
print_pdf_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_pdf_form(poly_factor(x^10-1));
Optinal variabes: nopreview=1 does not preview the PDF file.
References:
print_tex_form
,print_xdvi_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_png_form
: It transforms S to a file of the format png. dvipng should be installed.
Example:
print_png_form(x^3-1);
References:
print_tex_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_terminal_form
: It transforms S to the terminal form???
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_tex_form
: It transforms S to a string of the LaTeX format.
: This function allows optional variables table, raw
Description:
The global variable Print_tex_form_fraction_format takes the values "auto", "frac", or "/". The global variable Print_tex_form_no_automatic_subscript takes the values 0 or 1. BUG; A large input S cannot be translated.
Example:
print_tex_form(x*dx+1 | table=[["dx","\\partial_x"]]);
The optional variable table is used to give a translation table of asir symbols and tex symbols. when AMSTeX = 1, "begin pmatrix" and "end pmatrix" will be used to output matrix.
References:
print_xdvi_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_tfb_form
: It transforms S to the tfb format.
Example:
print_tfb_form(x+1);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_xdvi_form
: It transforms S to a xdvi file and previews the file by xdvi.
Example 0:
print_xdvi_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_xdvi_form(print_tex_form(1/2) | texstr=1);
References:
print_tex_form
,print_dvi_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
print_xv_form
: It transforms S to a gif file and previews the file by xv.
: This function allows optional variables input, format
Example 0:
print_xv_form(newmat(2,2,[[x^2,x],[y^2-1,x/(x-1)]]));
Example 1:
print_xv_form(x+y | format="png");
If the optional variable format="png" is set, png format will be used to generate an input for xv.
References:
print_tex_form
,print_gif_form
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_coefficient
: It returns the coefficient of V^Deg in F. F may be rational or list or vector.
Example:
F=[(x+y+z)^10/z^2,(x-y+z)^10/z^3]$ poly_coefficient(F,10,x);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_coefficients_list
: It returns the list of coefficients of F with respect to the variable list V. F may be rational or list or vector.
Example:
F=[(x+y+c*z)^2/c^2,(x-y+c*z)^2/c^3]$ poly_coefficients_list(F,[x,y,z]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_coefficients_of_monomial_list
: It returns the list of coefficients of F with respect to a list of monomials VV.
Example:
poly_coefficients_of_monomial_list(2+3*x+4*z,[1,x,y,z]); poly_coefficients_of_monomial_list((x+z)^3+5*y,[1,x,y,z,x^2*z]); poly_coefficients_of_monomial_list([(x+y)^3,x+y],[x,x^2,x^3,x^2*y,x*y^2,y^3]);
References:
poly_construct_from_coefficients_of_monomial_list
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_construct_from_coefficients_of_monomial_list
: It returns the inner product of L and VV.
Example:
L=tk_poly_coefficients_of_monomial_list((x+y)^3,VV=[x,x^2,x^3,x^2*y,x*y^2,y^3]); poly_construct_from_coefficients_of_monomial_list(L,VV);
References:
poly_coefficients_of_monomial_list
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_dact
: Act the differential operator Op to F. XL is a list of x variables.
Example:
poly_dact( x*dx+y*dy+a, x^(-3)*y^(-2), [x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_decompose_by_weight
: decompose F into homogeneous components with respect to the variable V with the weight W. The return value is [[Max_ord,Min_ord],[component of Max_ord, ..., component of Min_ord]];
Example:
poly_decompose_by_weight(x^2*dx^2-x*(x*dx+y*dy+a),[x,y,dx,dy],[-1,-1,1,1]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_degree
: It returns the degree of F with respect to the given weight vector.
: This function allows optional variables weight, v
Description:
The weight is given by the optional variable weight w. It returns
Example:
poly_degree(x^2+y^2-4 |weight=[100,1],v=[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_denominator
: It returns the denominator of L. L may be a list.
Example:
poly_denominator([1/(x^2-1),1/(x^3-1)]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_diff2euler
: Express the differential operator Op by the euler operators. XL is a list of x variables. When XL=[x,y], dx,dy are differential operators and tx,ty are Euler operators (tx=x*dx, ty=y*dy). t stands for theta. When the return value is R, R[0]*R[1]=Op.
Example:
poly_diff2euler(dx^2-a*x,[x]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_dmul
: Multiply Op1 and Op2 in the Weyl algebra (the ring of differential operators). XL is a list of x variables.
Example:
poly_dmul( x*dx+y*dy+a*x, x*y*dx*dy, [x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_dvar
: Add d to the variable name V.
Example:
poly_dvar([x1,x2,x3]); poly_dvar([x1,x2,x3] | d=t);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_elimination_ideal
: It computes the intersection of the ideal I and the subring K[VV].
: This function allows optional variables grobner_basis, gb, v, homo, grace, strategy
Description:
If grobner_basis is "yes" or gb=1, I is assumed to be a Grobner basis. The optional variable v is a list of variables which defines the ring of polynomials.
Example 0:
poly_elimination_ideal([x^2+y^2-4,x*y-1],[x]);
Example 1:
A = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=2,v=[y,x]); poly_elimination_ideal(A,[x]|grobner_basis="yes"); When strategy=1(default), nd_gr is used when trace=0(defauult), nd_gr_trace is used when trace=1.
References:
gr
,hgr
,gr_mod
,dp_*
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_euler2diff
: Translate the differential operator Op expressed in terms of euler operators into the operators in terms of d. XL is a list of x variables. When XL=[x,y], dx,dy are differential operators and tx,ty are Euler operators (tx=x*dx, ty=y*dy). t stands for theta.
Example:
poly_euler2diff(tx^2-x*(tx+1/2)^2,[x]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_expand
: This is an alias of poly_sort.
References:
poly_sort
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_factor
: It factorizes the polynomial F.
Example:
poly_factor(x^10-y^10);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_gcd
: It computes the polynomial GCD of F and G.
Example:
poly_gcd(x^10-y^10,x^25-y^25);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_gr_w
: It returns the Grobner basis of F for the weight vector W. It is the second interface for poly_grobner_basis.
Example:
poly_gr_w([x^2+y^2-1,x*y-1],[x,y],[1,0]);
References:
poly_in_w
,poly_grobner_basis
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_grobner_basis
: It returns the Grobner basis of I.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables which defines the ring of polynomials. Other Options; p (characteristic), homo, method (nd_gr_trace(default), nd_gr, nd_weyl_gr, nd_weyl_gr_trace, nd_f4, nd_f4_trace), order_matrix, order. See also asir manual. alias; poly_groebner_basis
Example:
A = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=2,v=[y,x],str=1); A->Generators; A->Ring->Variables; A->Ring->Order; B = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=[[10,1]],v=[y,x]); C = poly_grobner_basis([x^2+y^2-4,x*y-1]|order=[block,[0,1],[0,1]],v=[y,x]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_hilbert_polynomial
: It returns the Hilbert polynomial of the poly_init(I).
: This function allows optional variables s, v, sm1
Description:
The optional variable v is a list of variables. sm1=1 forces to call sm1. [sum(H(k),{k,0,h), H(h)] where H(h) is the number of degree h monomials when h>>0. On asir2018, it returns [sum(H(k),{k,0,h), H(h),[H[0],H[1],...],F,d] where F/(1-h)^d is the Poincare series.
Example:
poly_hilbert_polynomial([x1*y1,x1*y2,x2*y1,x2*y2]|s=k,v=[x1,x2,y1,y2]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_ideal_colon
: It computes the colon ideal of I by J V is the list of variables.
Example:
B=[(x+y+z)^50,(x-y+z)^50]$ V=[x,y,z]$ B=poly_ideal_colon(B,[(x+y+z)^49,(x-y+z)^49],V);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_ideal_intersection
: It computes the intersection of the ideal I and J V is the list of variables. Ord is the order.
Example:
A=[j*h*g*f*e*d*b,j*i*g*d*c*b,j*i*h*g*d*b,j*i*h*e*b,i*e*c*b,z]$ B=[a*d-j*c,b*c,d*e-f*g*h]$ V=[a,b,c,d,e,f,g,h,i,j,z]$ poly_ideal_intersection(A,B,V,0);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_ideal_saturation
: It computes the saturation ideal of I by J. V is the list of variables.
Example:
B=[(x+y+z)^50,(x-y+z)^50]$ V=[x,y,z]$ B=poly_ideal_saturation(B,[(x+y+z)^49,(x-y+z)^49],V);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_in
: It is an alias of poly_initial().
: This function allows optional variables order, v
Example:
poly_in([x^2+y^2-4,x*y-1]|order=0,v=[x,y]); poly_in([x^2+y^2-4,x*y-1]|order=[1,0],v=[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_in_w
: It returns the initial term or the initial ideal in_w(F) for the weight vector given by order. F is s single polynomial or a list of polynomials.
: This function allows optional variables gb
Example:
poly_in_w([x^2+y^2-1,x*y-x] , [x,y], [1,0]);
References:
poly_weight_to_omatrix
,poly_grobner_basis
,poly_gr_w
,poly_in_w_
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_in_w_
: It returns the initial term or the initial ideal in_w(F) for the weight vector given by order. F is s single polynomial or a list of polynomials. This is a new interface of poly_in_w with shorter args.
: This function allows optional variables v, weight, gb
Example:
poly_in_w_([x^2+y^2-1,x*y-x] | v=[x,y],weight=[1,0]);
References:
poly_weight_to_omatrix
,poly_grobner_basis
,poly_gr_w
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_initial
: It returns the initial ideal of I with respect to the given order.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables. This function computes
Example:
poly_initial([x^2+y^2-4,x*y-1]|order=0,v=[x,y]); poly_initial([x^2+y^2-4,x*y-1]|order=0,v=[x,y],gb=1); poly_in([x^2+y^2-4,x*y-1]|order=[1,0],v=[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_initial_coefficients
: It computes the coefficients of the initial ideal of I with respect to the given order.
: This function allows optional variables order, v
Description:
The optional variable v is a list of variables. The order is specified by the optional variable order
Example:
poly_initial_coefficients([x^2+y^2-4,x*y-1]|order=0,v=[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_initial_term
: It returns the initial term of a polynomial F with respect to the given weight vector.
: This function allows optional variables weight, order, v
Description:
The weight is given by the optional variable weight w. It returns
Example:
poly_initial_term( x^2+y^2-4 |weight=[100,1],v=[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_is_linear
:
Example:
poly_is_linear([x+t*y-1],[x,y]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_lcm
: It returns the LCM of L[0], L[1], ...
Example:
poly_lcm([x^2-1,x^3-1]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_numerator
: It returns the numerator of L. L may be a list.
Example:
poly_numerator([1/(x^2-1),1/(x^3-1)]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_ord_w
: It returns the order with respect to W of F.
Example:
poly_ord_w(x^2+y^2-1,[x,y],[1,3]);
References:
poly_in_w
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_pop_ord
: Restore the order saved by poly_push_ord.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_prime_dec
: It computes the prime ideal decomposition of the radical of I. V is a list of variables.
Example:
B=[x00*x11-x01*x10,x01*x12-x02*x11,x02*x13-x03*x12,x03*x14-x04*x13, -x11*x20+x21*x10,-x21*x12+x22*x11,-x22*x13+x23*x12,-x23*x14+x24*x13]; V=[x00,x01,x02,x03,x04,x10,x11,x12,x13,x14,x20,x21,x22,x23,x24]; poly_prime_dec(B,V | radical=1);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_push_ord
: Save the current value of dp_ord and set dp_ord(Ord).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_r_omatrix
: It gives a weight matrix, which is used to compute a Grobner basis in K(x)<dx>, |x|=|dx|=N.
Example:
poly_r_omatrix(3); When the option lex is given, the last lex variables are compared firstly by the lexicographic order, e.g., poly_r_omatrix(4 | lex=2) is compared by the matrix 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 ....
References:
poly_weight_to_omatrix
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_replace_factor
: It factorizes F and replaces factors by the Rule.
Example:
poly_replace_factor(2*x/((x-y)^3*y), [[x-y,s]]); It returns 2*x/(s^3*y).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_solve_linear
: It solves the system of linear equations Eqs with respect to the set of variables V. When the option p=P is given, it solves the system by mod P. When the option reverse=1 is given, the lex order of reverse(V) is used.
Example:
poly_solve_linear([2*x+3*y-z-2, x+y+z-1], [x,y,z]); poly_solve_linear([2*x+3*y-z-2, x+y+z-1], [x,y,z] | p=13);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_sort
: It expands F with a given variables v=V and a given weight w=W. It returns a quote object. If truncate option is set, the expansion is truncated at the given degree.
: This function allows optional variables v, w, truncate
Example:
poly_sort((x-y-a)^3 | v=[x,y], w=[-1,-1]) returns a series expansion in terms of x and y.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_subsetq
: If the ideal II is contained in the ideal JJ, it returns 1, else 0.
Example:
poly_subsetq([x^2-1,(x-1)*(y-2)],[x-1,y-2],[x,y]);
Optinal variabes: gb=1 (if JJ is already a GB). verbose=1 Note that when gb=1, the order must not be changed since the GB of JJ was computed. Otherwise, this function does not give correct answer or stucks. If gb=1 is not given, dp_ord(0) is executed in this function.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_toric_ideal
: It returns generators of the affine toric ideal defined by the matrix(list) A. V is the list of variables.
Example:
poly_toric_ideal([[1,1,1,1],[0,1,2,3]],base_var_list(x,0,3));
Optinal variabes: nk_toric=1 (disable 4ti2)
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_w_marking
: The monomials x^a in Id is rewritten to x^a*t_w^(<a,w>+b). <a,w> is the inner product and b is an integer to avoid negative powers of t_w. Return value is [w-marked polynomial, b]
Example:
poly_w_marking(x*dx^2+y*dy+a,[x,y,dx,dy],[-1,-1,1,1]); [t_w*x*dx^2+y*dy+a,0]
Optinal variabes: specify a name of homogenization variable by the option hvar. The default is t_w.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_weight_to_omatrix
: [obsoleted] It translates the weight vector W into a matrix, which is used to set the order in asir Grobner basis functions. V is the list of variables.
Example:
M=poly_weight_to_omatrix([2,1,0],[x,y,z]); nd_gr([x^3+z^3-1,x*y*z-1,y^2+z^2-1,[x,y,z],0,M);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_weight_to_ord_matrix
: Weight vector W is transformed to a matrix defined order for dp_ord, nd_gr, ... It is a new version of poly_weight_to_omatrix(W,V) [obsoleted]
Example:
Mat=poly_weight_to_ord_matrix([1,1,1,1,0,1,1,1,1,0]); Mat=poly_weight_to_ord_matrix([]|tie_breaker=[lex,0,1,2,3,5,6,7,8,4,9]);
Optinal variabes: tie_breaker=[lex,n1,n2,n3,...] defines the lexcographic order x_n1,x_n2, x_n3, ... when variables are x_*
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
poly_weyl_subsetq
: If the ideal II in the Weyl algebra is contained in the ideal JJ, it returns 1, else 0.
Example:
poly_weyl_subsetq([x*dx^2],[x*dx-1],[x,dx]);
Optinal variabes: gb=1 (if JJ is already a GB). verbose=1. Note that when gb=1, the order must not be changed since the GB of JJ was computed. Otherwise, this function does not give correct answer or stucks. If gb=1 is not given, dp_ord(0) is executed in this function.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
ライブラリ glib は, Risa/Asir の グラフィック基本関数 (draw_obj) に対する, 昔の BASIC のような単純なインタフェースを提供する.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_clear
: Clear the screen.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_flush
: ; Flush the output. (Cfep only. It also set initGL to 1.).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_line
: It draws the line [X0,Y0]– [X1,Y1] with color and shape
: This function allows optional variables color, shape
Example:
glib_line(0,0,5,3/2 | color=0xff00ff); glib_line(0,0,10,0 | shape=arrow);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_open
: It starts the ox_plot server and opens a canvas. The canvas size is set to Glib_canvas_x X Glib_canvas_y (the default value is 400). This function is automatically called when the user calls glib functions.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_plot
: It plots an object F on the glib canvas.
Example 0:
glib_plot([[0,1],[0.1,0.9],[0.2,0.7],[0.3,0.5],[0.4,0.8]]);
Example 1:
glib_plot(tan(x));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_print
: It put a string Text at [X,Y] on the glib canvas.
: This function allows optional variables color
Example:
glib_print(100,100,"Hello Worlds" | color=0xff0000);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_ps_form
: It returns the PS code generated by executing S (experimental).
Example 0:
glib_ps_form(quote( glib_line(0,0,100,100) ));
Example 1:
glib_ps_form(quote([glib_line(0,0,100,100),glib_line(100,0,0,100)]));
References:
glib_tops
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_putpixel
: It puts a pixel at [X,Y] with color
: This function allows optional variables color
Example:
glib_putpixel(1,2 | color=0xffff00);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_remove_last
: Remove the last object. glib_flush() should also be called to remove the last object. (cfep only).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_set_pixel_size
: Set the size of putpixel to P. 1.0 is the default. (cfep only).
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_tops
: If Glib_ps is set to 1, it returns a postscript program to draw the picture on the canvas.
References:
print_output
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
glib_window
: It generates a window with the left top corner [Xmin,Ymin] and the right bottom corner [Xmax,Ymax]. If the global variable Glib_math_coordinate is set to 1, mathematical coordinate system will be employed, i.e., the left top corner will have the coordinate [Xmin,Ymax].
Example:
glib_window(-1,-1,10,10);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
17.1.1 ox_check_errors2 |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
ox_check_errors2
:: 識別番号 p のサーバのスタック上にあるエラーオブジェクトをリストで戻す.
リスト
数
[219] P=sm1.start(); 0 [220] sm1.sm1(P," 0 get "); 0 [221] ox_check_errors2(P); [error([7,4294967295,executeString: Usage:get])] Error on the server of the process number = 1 To clean the stack of the ox server, type in ox_pops(P,N) (P: process number, N: the number of data you need to pop) out of the debug mode. If you like to automatically clean data on the server stack, set XM_debug=0;
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
OXshell はシステムのコマンドを ox server より実行する仕組みである. 詳しくは OpenXM/src/kan96xx/Doc/oxshell.oxw および OpenXM/doc/Papers/rims-2003-12-16-ja.tex を見よ.
18.0.1 oxshell.get_value | ||
18.0.2 oxshell.oxshell | ||
18.0.3 oxshell.set_value |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
oxshell.get_value
: It get the value of the variable NAME on the server ox_shell.
Example:
oxshell.set_value("abc","Hello world!"); oxshell.oxshell(["cp", "stringIn://abc", "stringOut://result"]); oxshell.get_value("result"); What we do is a file $TMP/abc* is generated with the contents Hello world! and copied to $TMP/result* The contents of the file is stored in the variable result on ox_sm1.
References:
oxshell.oxshell
,oxshell.set_value
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
oxshell.oxshell
: It executes command L on a ox_shell server. L must be an array. The result is the outputs to stdout and stderr. A temporary file will be generated under $TMP. cf. oxshell.keep_tmp()
Example:
oxshell.oxshell(["ls"]);
References:
ox_shell
,oxshell.set_value
,oxshell.get_value
,oxshell
,of
,sm1.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
oxshell.set_value
: It set the value V to the variable Name on the server ox_shell.
Example:
oxshell.set_value("abc","Hello world!"); oxshell.oxshell(["cat", "stringIn://abc"]);
References:
oxshell.oxshell
,oxshell.get_value
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
19.0.1 asir_contrib_update |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
asir_contrib_update
: It updates the asir-contrib library and/or some other files to the HEAD branch. The usage will be shown by asir_contrib_update() without the option update. Options are update, clean, url, install_dir, zip_files, tmp. Default values update=0, clean=0, url="http://www.math.kobe-u.ac.jp/OpenXM/Current", install_dir=%APPDATA%/OpenXM (win) or install_dir=$OpenXM_tmp/OpenXM (others) zip_files=["lib-asir-contrib.zip"]
Example:
asir_contrib_update(); asir_contrib_update(|update=1); update the library asir_contrib_update(|update=3); update the library and the documents asir_contrib_update(|clean=1); asir_contrib_update(|zip_files=["lib-asir-contrib.zip","doc-asir2000.zip","doc-asir-contrib.zip","doc-other-docs.zip"]);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
システムの資源にアクセスするためおよび文字列処理の便利な関数を集めてある.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_damepathq
: When S is a string by the ShiftJIS code and S contains dame-moji with respect to \, it returns [a non-zero number, the string].
Example:
T = [0x5c,0xe4,0x5c,0x41,0x42]$ T2=asciitostr(T)$ util_damepathq(T2);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_file_exists
: It returns 1 when Fname exists. It returns 0 when Fname does not exist.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_filter
: It executes the filter program Command with the Input and returns the output of the filter as a string.
: This function allows optional variables env
Example:
util_filter("sort","cat\ndog\ncentipede\n");
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_find_and_replace
: It replaces W in S by Wnew. Arguments must be lists of ascii codes or strings.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_find_start
: It tries to find the gnome-open command or an installed browser in unix systems. It returns "open" on MacOS X and returns "start" on Windows.
: This function allows optional variables browser
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_find_substr
: It returns the position of W in S. If W cannot be found, it returns -1. Arguments must be lists of ascii codes or strings.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_index
: It returns the name part and the index part of V.
Example:
util_index(x_2_3)
References:
util_v
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_load_file_as_a_string
: It reads a file F as a string.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_part
: It returns from Pth element to Qth element of S.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_read_file_as_a_string
: It reads a file F as a string.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_remove_cr
: It removes cr/lf/tabs from S. Arguments must be a list of ascii codes.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_timing
: Show the timing data to execute Q.
Example:
util_timing( quote( fctr(x^50-y^50) ));
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_v
: It returns a variable indexed by L.
Example:
util_v("x",[1,3]);
References:
util_index
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
util_write_string_to_a_file
: It writes a string S to a file Fname.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
この節では asir-contrib のその他のマニュアルを紹介する.
それからまだ分類がおわっていない関数を解説する. これらの関数は将来は別の独立した節へ移す予定である.
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../gtt_ekn-html/gtt_ekn-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../gnuplot-html/gnuplot-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../mathematica-html/mathematica-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../mk_graph-html/mk_graph-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../n_wishartd-html/n_wishartd-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../nn_ndbf-html/nn_ndbf-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../noro_mwl-html/noro_mwl-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../noro_pd-html/noro_pd-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../noro_module_syz-html/noro_module_syz-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../ns_twistedlog-html/ns_twistedlog-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../nk_fb_gen_c-html/nk_fb_gen_c-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../ok_diff-html/ok_diff-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../ok_dmodule-html/ok_dmodule-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../ox_pari-html/ox_pari-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../plucker-html/plucker-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../tk_ode_by_mpfr-html/tk_ode_by_mpfr-ja.html
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../todo_parametrize-html/todo_parametrize-ja.html
パッケージ todo_parametrize/todo_parametrize.rr
をロードすることにより,
有理曲線のパラメータ表示を見付ける関数である,
paramerize
が利用できるようになる.
詳しくは See 概要 in Risa/Asir 代数曲線論用パッケージ説明書 を見よ
(Web 版 Risa/Asir 代数曲線論用パッケージ説明書).
このパッケージのマニュアルへの統合はまだできていない.
このパッケージはまだ module 構造を利用していないので, 既存のライブラリと
名前の衝突の可能性がある.
[1205] load("todo_parametrize/todo_parametrize.rr"); 1 [1425] parametrize(y^2-x^3); [155*t^2+20*t+1,720*t^4+1044*t^3+580*t^2,155*t^4+20*t^3+t^2,(-x)/(y)] [1426] parametrize(y^2+x^3); [-t,1,t^3,(-x)/(y)]
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
../taji_alc-html/taji_alc-ja.html
パッケージ taji_alc.rr
をロードすることにより,
一変数代数的コホモロジ群に関連する関数をロードできる.
(Web 版 Risa/Asir 一変数代数的局所コホモロジー類に関する Risa/Aisr パッケージ説明書).
import("taji_alc.rr"); taji_alc.laurent_expansion(x,(x-1)^3);
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
OpenXM documents. には texinfo で書かれていない asir-contrib のファイルや関数のマニュアル, および 関連論文へのリンクがある.
(yang, fj_curve, nk_mora 等)
[ << ] | [ < ] | [上] | [ > ] | [ >> ] | [冒頭] | [目次] | [見出し] | [ ? ] |
移動: | A B G M N O P U |
---|
移動: | A B G M N O P U |
---|
[冒頭] | [目次] | [見出し] | [ ? ] |
base_cancel
base_choose
base_f_definedp
base_flatten
base_intersection
base_is_asir2018
base_is_equal
base_ith
base_makelist
base_memberq
base_permutation
base_position
base_preplace
base_product
base_prune
base_range
base_rebuild_opt
base_replace
base_replace_n
base_rest
base_set_intersection
base_set_minus
base_set_union
base_subsequenceq
base_subsetq
base_subsets_of_size
base_sum
base_var_list
matrix_adjugate
matrix_clone
matrix_det
matrix_diagonal_matrix
matrix_eigenavalues
matrix_gauge_transformation
matrix_identity_matrix
matrix_ij
matrix_image
matrix_inner_product
matrix_inverse
matrix_inverse_singular
matrix_is_zero
matrix_kernel
matrix_kronecker_product
matrix_list_to_matrix
matrix_matrix_to_list
matrix_ones
matrix_poly_to_matrix
matrix_rank
matrix_rank_ff
matrix_row_matrix
matrix_solve_linear
matrix_stack
matrix_submatrix
matrix_transpose
print_c_form
print_dvi_form
print_em
print_format
print_gif_form
print_input_form
print_open_math_tfb_form
print_open_math_xml_form
print_output
print_ox_rfc100_xml_form
print_pdf_form
print_png_form
print_terminal_form
print_tex_form
print_tfb_form
print_xdvi_form
print_xv_form
poly_coefficient
poly_coefficients_list
poly_coefficients_of_monomial_list
poly_construct_from_coefficients_of_monomial_list
poly_dact
poly_decompose_by_weight
poly_degree
poly_denominator
poly_diff2euler
poly_dmul
poly_dvar
poly_elimination_ideal
poly_euler2diff
poly_expand
poly_factor
poly_gcd
poly_gr_w
poly_grobner_basis
poly_hilbert_polynomial
poly_ideal_colon
poly_ideal_intersection
poly_ideal_saturation
poly_in
poly_in_w
poly_in_w_
poly_initial
poly_initial_coefficients
poly_initial_term
poly_is_linear
poly_lcm
poly_numerator
poly_ord_w
poly_pop_ord
poly_prime_dec
poly_push_ord
poly_r_omatrix
poly_replace_factor
poly_solve_linear
poly_sort
poly_subsetq
poly_toric_ideal
poly_w_marking
poly_weight_to_omatrix
poly_weight_to_ord_matrix
poly_weyl_subsetq
util_damepathq
util_file_exists
util_filter
util_find_and_replace
util_find_start
util_find_substr
util_index
util_load_file_as_a_string
util_part
util_read_file_as_a_string
util_remove_cr
util_timing
util_v
util_write_string_to_a_file
[冒頭] | [目次] | [見出し] | [ ? ] |
[冒頭] | [目次] | [見出し] | [ ? ] |
この文書は5月 1, 2025にtexi2html 5.0を用いて生成されました。
ナビゲーションパネル中のボタンには以下の意味があります。
ボタン | 名称 | 移動先 | 1.2.3項からの移動先 |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[上] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[冒頭] | 冒頭 | Cover (top) of document | |
[目次] | 目次 | Table of contents | |
[見出し] | 見出し | 見出し | |
[ ? ] | About | About (help) |
例では、以下に示す構造を持つ文書の1.2.3項を現在位置に仮定しています。
この文書は5月 1, 2025にtexi2html 5.0を用いて生成されました。