@overfullrule=0pt
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
この節は正則ホロノミック系を級数で解くための
函数をあつめてある.
アルゴリズムについては [SST] に説明がある.
このパッケージは次のコマンド load("dsolv.rr");
でロードできる.
このパッケージは Diff
および Dmodule
を使用する.
OpenXM/Risa/Asir での利用にあたっては,
load("dsolv.rr");$
が始めに必要.
このパッケージは ox_sm1
を利用している.
したがって使用できる変数は sm1
パッケージと同様の変数しかつかえない.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
1.1.1 dsolv_dual | ||
1.1.2 dsolv_starting_term |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
dsolv_dual
:: f のグレブナ双対
リスト
リスト
Algorithm:
この函数は本 [SST] の Algorithm 2.3.14 の実装である.
出力中の変数 x, y, ... をそれぞれ log(x), log(y), ..., でおきかえると,
これらの log 多項式は,
f_(x->x*dx, y->y*dy, ...)
で生成される微分方程式系
の解となっている.
[435] dsolv_dual([y-x^2,y+x^2],[x,y]); [x,1] [436] dsolv_act(y*dy-sm1.mul(x*dx,x*dx,[x,y]),log(x),[x,y]); 0 [437] dsolv_act(y*dy+sm1.mul(x*dx,x*dx,[x,y]),log(x),[x,y]); 0 [439] primadec([y^2-x^3,x^2*y^2],[x,y]); [[[y^2-x^3,y^4,x^2*y^2],[y,x]]] [440] dsolv_dual([y^2-x^3,x^2*y^2],[x,y]); [x*y^3+1/4*x^4*y, x^2*y, x*y^2+1/12*x^4, y^3+x^3*y, x^2, x*y, y^2+1/3*x^3, x, y, 1] [441] dsolv_test_dual(); Output is omitted.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
dsolv_starting_term
:: 正則ホロノミック系 f の方向 w での級数解の Staring terms を計算する. ここで, v は変数の集合.
リスト
リスト
Dsolv_message_starting_term
を 1 にしておくと,
この函数は計算の途中にいろいろとメッセージを出力する.
Algorithm: Saito, Sturmfels, Takayama, Grobner Deformations of Hypergeometric Differential Equations ([SST]), Chapter 2.
[1076] F = sm1.gkz( [ [[1,1,1,1,1],[1,1,0,-1,0],[0,1,1,-1,0]], [1,0,0]]); [[x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,-x4*dx4+x2*dx2+x1*dx1, -x4*dx4+x3*dx3+x2*dx2, -dx2*dx5+dx1*dx3,dx5^2-dx2*dx4],[x1,x2,x3,x4,x5]] [1077] A= dsolv_starting_term(F[0],F[1],[1,1,1,1,0])$ Computing the initial ideal. Done. Computing a primary ideal decomposition. Primary ideal decomposition of the initial Frobenius ideal to the direction [1,1,1,1,0] is [[[x5+2*x4+x3-1,x5+3*x4-x2-1,x5+2*x4+x1-1,3*x5^2+(8*x4-6)*x5-8*x4+3, x5^2-2*x5-8*x4^2+1,x5^3-3*x5^2+3*x5-1], [x5-1,x4,x3,x2,x1]]] ----------- root is [ 0 0 0 0 1 ] ----------- dual system is [x5^2+(-3/4*x4-1/2*x3-1/4*x2-1/2*x1)*x5+1/8*x4^2 +(1/4*x3+1/4*x1)*x4+1/4*x2*x3-1/8*x2^2+1/4*x1*x2, x4-2*x3+3*x2-2*x1,x5-x3+x2-x1,1] [1078] A[0]; [[ 0 0 0 0 1 ]] [1079] map(fctr,A[1][0]); [[[1/8,1],[x5,1],[log(x2)+log(x4)-2*log(x5),1], [2*log(x1)-log(x2)+2*log(x3)+log(x4)-4*log(x5),1]], [[1,1],[x5,1],[-2*log(x1)+3*log(x2)-2*log(x3)+log(x4),1]], [[1,1],[x5,1],[-log(x1)+log(x2)-log(x3)+log(x5),1]], [[1,1],[x5,1]]]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Jump to: | D |
---|
Index Entry | Section | ||
---|---|---|---|
| |||
D | |||
dsolv_dual | 1.1.1 dsolv_dual | ||
dsolv_starting_term | 1.1.2 dsolv_starting_term | ||
|
Jump to: | D |
---|
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
This document was generated on May 1, 2025 using texi2html 5.0.
The buttons in the navigation panels have the following meaning:
Button | Name | Go to | From 1.2.3 go to |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[ Up ] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[Top] | Top | Cover (top) of document | |
[Contents] | Contents | Table of contents | |
[Index] | Index | Index | |
[ ? ] | About | About (help) |
where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:
This document was generated on May 1, 2025 using texi2html 5.0.