Go to the first, previous, next, last section, table of contents.


taji_alc.rem_formula

taji_alc.rem_formula(polylist)
:: 多項式f(x)を与えたときの剰余公式を求める.
return
switch および 説明文を参照
polylist
f(x)をQ上で既約分解した [[因子,重複度,零点の記号],...] なるリスト
switch
オプション指定 case 0 : xの冪で整理し, リストで返す. case 10 : f(x)の冪で整理し, リストで返す. (一因子の場合のみ対応) case 20 : xの冪で整理し, symbolicな表現で返す. default : case 0
[583] taji_alc.rem_formula([[x-1,1,z1],[x-2,1,z2]]);
[[-x+2],[x-1]]
[584] taji_alc.rem_formula([[x-1,1,z1],[x-2,1,z2]]|switch=20);
(-p^(0)(z1)+p^(0)(z2))*x+2*p^(0)(z1)-p^(0)(z2)

[587] taji_alc.rem_formula([[x-1,2,z1]]);
[[x-1,1]]
[588] taji_alc.rem_formula([[x-1,2,z1]]|switch=20);
p^(1)(z1)*x-p^(1)(z1)+p^(0)(z1)

[494] taji_alc.rem_formula([[x-1,3,z1]]|switch=20);
1/2*p^(2)(z1)*x^2+(-p^(2)(z1)+p^(1)(z1))*x+1/2*p^(2)(z1)-p^(1)(z1)+p^(
0)(z1)

[229] taji_alc.rem_formula([[x+1,2,z1],[x^3-x-1,1,z2]]);
[[-x^4-x^3+x^2+2*x+1,-2*x^4-3*x^3+2*x^2+5*x+3],[(-1/23*z2^2-10/23*z2+1
6/23)*x^4+(-12/23*z2^2-5/23*z2+31/23)*x^3+(-5/23*z2^2+19/23*z2-12/23)*
x^2+(22/23*z2^2+13/23*z2-53/23)*x+16/23*z2^2-1/23*z2-26/23]]
[230] taji_alc.rem_formula([[x+1,2,z1],[x^3-x-1,1,z2]]|switch=20);
(-1/23*p^(0)(z2)*z2^2-10/23*p^(0)(z2)*z2-2*p^(0)(z1)+16/23*p^(0)(z2)-p
^(1)(z1))*x^4+(-12/23*p^(0)(z2)*z2^2-5/23*p^(0)(z2)*z2-3*p^(0)(z1)+31/
23*p^(0)(z2)-p^(1)(z1))*x^3+(-5/23*p^(0)(z2)*z2^2+19/23*p^(0)(z2)*z2+2
*p^(0)(z1)-12/23*p^(0)(z2)+p^(1)(z1))*x^2+(22/23*p^(0)(z2)*z2^2+13/23*
p^(0)(z2)*z2+5*p^(0)(z1)-53/23*p^(0)(z2)+2*p^(1)(z1))*x+16/23*p^(0)(z2
)*z2^2-1/23*p^(0)(z2)*z2+3*p^(0)(z1)-26/23*p^(0)(z2)+p^(1)(z1)

[231] taji_alc.rem_formula([[x^3-x-1,2,z]]|switch=10);
[[[(3/23*z^2-4/23)*x^2+(-1/23*z+3/23)*x-4/23*z^2+3/23*z+4/23,(162/529*
z^2-174/529*z-108/529)*x^2+(-105/529*z^2+54/529*z+70/529)*x-108/529*z^
2+116/529*z+72/529],[(-6/23*z^2+9/23*z+4/23)*x^2+(9/23*z^2-2/23*z-6/23
)*x+4/23*z^2-6/23*z+5/23]]]
参照

ChangeLog


Go to the first, previous, next, last section, table of contents.