taji_alc.residue
[219] taji_alc.residue(1,x^4+1); [[x^4+1,-1/4*x]]この例で言うと, 求めた留数多項式-1/4*xに, x^4+1の(4つある)零点をそれぞれ代入したものが個別の留数値である.
[221] taji_alc.residue(x^8,[[x^3-x-1,3]]); [[x^3-x-1,-2243/12167*x^2+2801/12167*x+5551/12167]] [222] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]); [[x^2+3*x-1,-284/4563*x-311/1521],[x-1,89/432],[x+1,7/432]] [223] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]|switch=1) ; [[x^2+3*x-1,[-284*x-933,4563]],[x-1,[89,432]],[x+1,[7,432]]] [234] taji_alc.residue(x^2+x,[[x+1,3],[x-1,3],[x^2+3*x-1,2]]|switch=1, pole=[x+1]); [[x+1,[7,432]]] [225] taji_alc.residue(x^3+1,x^18-2*x^14+x^10-x^8+2*x^4-1); [[x^4+x^3+x^2+x+1,-1/25*x^2-1/50*x-1/25],[x^4-x^3+x^2-x+1,-1/25*x^3+2/ 25*x^2-1/50*x-1/25],[x^2+1,1/4*x+5/32],[x+1,-39/320],[x-1,67/320]]
ChangeLog
Go to the first, previous, next, last section, table of contents.