Go to the first, previous, next, last section, table of contents.


f_res.dres, f_res.dresM

f_res.dres(Equations,Vars)
:: Dixon resultant を返す
f_res.dresM(Equations,Vars)
:: 行列式が Dixon resultant になるような行列を返す
return
f_res.dres
多項式
f_res.dresM
行列
Equaitons
多項式のリスト
Vars
不定元のリスト
オプション
norsc
任意
rowidx
配列
colidx
配列
p
素数
sub
リスト
[0] F0 = a1*x + a2*y + a3$
[1] F1 = b1*x + b2*y + b3$
[2] F2 = c1*x^2 + c2*y^2 + c3 + c4*x*y + c5*x + c6*y$
[3] f_res.dresM( [F0,F1,F2], [x,y] );
[ c1*b3*a2-c1*b2*a3 -c2*b3*a1+c4*b3*a2+(c2*b1-c4*b2)*a3 (c3*b2-c6*b3)*a1+(-c3*b
1+c5*b3)*a2+(c6*b1-c5*b2)*a3 ]
[ 0 -c2*b2*a1+c2*b1*a2 -c2*b3*a1+c2*b1*a3 ]
[ -c1*b2*a1+c1*b1*a2 -c4*b2*a1+c4*b1*a2 -c4*b3*a1+c1*b3*a2+(c4*b1-c1*b2)*a3 ]
[4] R = dres( [F0,F1,F2], [x,y] );
(-c3*c2*c1*b2^3+c6*c2*c1*b3*b2^2-c2^2*c1*b3^2*b2)*a1^3+(((3*c3*c2*c1*b2^2-2*c6*
c2*c1*b3*b2+c2^2*c1*b3^2)*b1-c5*c2*c1*b3*b2^2+c4*c2*c1*b3^2*b2)*a2+((-c6*c2*c1*
b2^2+2*c2^2*c1*b3*b2)*b1+c5*c2*c1*b2^3-c4*c2*c1*b3*b2^2)*a3)*a1^2+(((-3*c3*c2*c
1*b2+c6*c2*c1*b3)*b1^2+(2*c5*c2*c1*b3*b2-c4*c2*c1*b3^2)*b1-c2*c1^2*b3^2*b2)*a2^
2+((2*c6*c2*c1*b2-2*c2^2*c1*b3)*b1^2-2*c5*c2*c1*b2^2*b1+2*c2*c1^2*b3*b2^2)*a3*a
2+(-c2^2*c1*b2*b1^2+c4*c2*c1*b2^2*b1-c2*c1^2*b2^3)*a3^2)*a1+(c3*c2*c1*b1^3-c5*c
2*c1*b3*b1^2+c2*c1^2*b3^2*b1)*a2^3+(-c6*c2*c1*b1^3+(c5*c2*c1*b2+c4*c2*c1*b3)*b1
^2-2*c2*c1^2*b3*b2*b1)*a3*a2^2+(c2^2*c1*b1^3-c4*c2*c1*b2*b1^2+c2*c1^2*b2^2*b1)*
a3^2*a2
[5] fctr(R);
[[-1,1],[c2,1],[c1,1],[b2*a1-b1*a2,1],[(c3*b2^2-c6*b3*b2+c2*b3^2)*a1^2+(((-2*c3
*b2+c6*b3)*b1+c5*b3*b2-c4*b3^2)*a2+((c6*b2-2*c2*b3)*b1-c5*b2^2+c4*b3*b2)*a3)*a1
+(c3*b1^2-c5*b3*b1+c1*b3^2)*a2^2+(-c6*b1^2+(c5*b2+c4*b3)*b1-2*c1*b3*b2)*a3*a2+(
c2*b1^2-c4*b2*b1+c1*b2^2)*a3^2,1]]


Go to the first, previous, next, last section, table of contents.