dsolv_starting_term
Dsolv_message_starting_term
to 1,
then this function outputs messages during the computation.
[1076] F = sm1_gkz( [ [[1,1,1,1,1],[1,1,0,-1,0],[0,1,1,-1,0]], [1,0,0]]); [[x5*dx5+x4*dx4+x3*dx3+x2*dx2+x1*dx1-1,-x4*dx4+x2*dx2+x1*dx1, -x4*dx4+x3*dx3+x2*dx2, -dx2*dx5+dx1*dx3,dx5^2-dx2*dx4],[x1,x2,x3,x4,x5]] [1077] A= dsolv_starting_term(F[0],F[1],[1,1,1,1,0])$ Computing the initial ideal. Done. Computing a primary ideal decomposition. Primary ideal decomposition of the initial Frobenius ideal to the direction [1,1,1,1,0] is [[[x5+2*x4+x3-1,x5+3*x4-x2-1,x5+2*x4+x1-1,3*x5^2+(8*x4-6)*x5-8*x4+3, x5^2-2*x5-8*x4^2+1,x5^3-3*x5^2+3*x5-1], [x5-1,x4,x3,x2,x1]]] ----------- root is [ 0 0 0 0 1 ] ----------- dual system is [x5^2+(-3/4*x4-1/2*x3-1/4*x2-1/2*x1)*x5+1/8*x4^2 +(1/4*x3+1/4*x1)*x4+1/4*x2*x3-1/8*x2^2+1/4*x1*x2, x4-2*x3+3*x2-2*x1,x5-x3+x2-x1,1] [1078] A[0]; [[ 0 0 0 0 1 ]] [1079] map(fctr,A[1][0]); [[[1/8,1],[x5,1],[log(x2)+log(x4)-2*log(x5),1], [2*log(x1)-log(x2)+2*log(x3)+log(x4)-4*log(x5),1]], [[1,1],[x5,1],[-2*log(x1)+3*log(x2)-2*log(x3)+log(x4),1]], [[1,1],[x5,1],[-log(x1)+log(x2)-log(x3)+log(x5),1]], [[1,1],[x5,1]]]
Go to the first, previous, next, last section, table of contents.