sm1_gbsm1_gb
    is the list of the Grobner basis of f and the initial
    terms (when w is not given) or initial ideal (when w is given).
sm1_gb_d returns the results by a list of distributed polynomials.
    Monomials in each distributed polynomial are ordered in the given order.
    The return value consists of
    [variable names, order matrix, grobner basis in districuted polynomials,
     initial monomials or initial polynomials].
sm1_gb returns,
   as the third return value, a list of
   the Grobner basis and the initial ideal
   with sums of monomials sorted by the given order.
   Each polynomial is expressed as a string temporally for now.
[293] sm1_gb([[x*dx+y*dy-1,x*y*dx*dy-2],[x,y]]); [[x*dx+y*dy-1,y^2*dy^2+2],[x*dx,y^2*dy^2]]
In the example above,
[294] sm1_gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]); [[dx+dy^3-4*dy,-dy^4+4*dy^2-1],[dx,-dy^4]]
In the example above, two monomials
[294] F=sm1_gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]|sorted=1);
      map(print,F[2][0])$
      map(print,F[2][1])$
[595]
   sm1_gb([["dx*(x*dx +y*dy-2)-1","dy*(x*dx + y*dy -2)-1"],
             [x,y],[[dx,1,x,-1],[dy,1]]]);
[[x*dx^2+(y*dy-h^2)*dx-h^3,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx-h^3*dy],
 [x*dx^2+(y*dy-h^2)*dx,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx]]
[596]
   sm1_gb_d([["dx (x dx +y dy-2)-1","dy (x dx + y dy -2)-1"],
             "x,y",[[dx,1,x,-1],[dy,1]]]);
[[[e0,x,y,H,E,dx,dy,h],
 [[0,-1,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],
  [0,1,1,1,1,1,1,0],[0,0,0,0,0,0,-1,0],[0,0,0,0,0,-1,0,0],
  [0,0,0,0,-1,0,0,0],[0,0,0,-1,0,0,0,0],[0,0,-1,0,0,0,0,0],
  [0,0,0,0,0,0,0,1]]],
[[(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>+(-1)*
<<0,0,0,0,0,0,0,3>>,(1)*<<0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0
,0,0,0,1,2>>+(-1)*<<0,0,0,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>+(-1)*<<0,0,0,0,0,0
,1,3>>],
 [(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>,(1)*<
<0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0,0,0,0,1,2>>+(-1)*<<0,0,0
,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>]]]
sm1_reduction, sm1_rat_to_p
Go to the first, previous, next, last section, table of contents.