sm1_gb
sm1_gb
is the list of the Grobner basis of f and the initial
terms (when w is not given) or initial ideal (when w is given).
sm1_gb_d
returns the results by a list of distributed polynomials.
Monomials in each distributed polynomial are ordered in the given order.
The return value consists of
[variable names, order matrix, grobner basis in districuted polynomials,
initial monomials or initial polynomials].
sm1_gb
returns,
as the third return value, a list of
the Grobner basis and the initial ideal
with sums of monomials sorted by the given order.
Each polynomial is expressed as a string temporally for now.
[293] sm1_gb([[x*dx+y*dy-1,x*y*dx*dy-2],[x,y]]); [[x*dx+y*dy-1,y^2*dy^2+2],[x*dx,y^2*dy^2]]
In the example above,
[294] sm1_gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]); [[dx+dy^3-4*dy,-dy^4+4*dy^2-1],[dx,-dy^4]]
In the example above, two monomials
[294] F=sm1_gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]|sorted=1); map(print,F[2][0])$ map(print,F[2][1])$
[595] sm1_gb([["dx*(x*dx +y*dy-2)-1","dy*(x*dx + y*dy -2)-1"], [x,y],[[dx,1,x,-1],[dy,1]]]); [[x*dx^2+(y*dy-h^2)*dx-h^3,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx-h^3*dy], [x*dx^2+(y*dy-h^2)*dx,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx]] [596] sm1_gb_d([["dx (x dx +y dy-2)-1","dy (x dx + y dy -2)-1"], "x,y",[[dx,1,x,-1],[dy,1]]]); [[[e0,x,y,H,E,dx,dy,h], [[0,-1,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0], [0,1,1,1,1,1,1,0],[0,0,0,0,0,0,-1,0],[0,0,0,0,0,-1,0,0], [0,0,0,0,-1,0,0,0],[0,0,0,-1,0,0,0,0],[0,0,-1,0,0,0,0,0], [0,0,0,0,0,0,0,1]]], [[(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>+(-1)* <<0,0,0,0,0,0,0,3>>,(1)*<<0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0 ,0,0,0,1,2>>+(-1)*<<0,0,0,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>+(-1)*<<0,0,0,0,0,0 ,1,3>>], [(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>,(1)*< <0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0,0,0,0,1,2>>+(-1)*<<0,0,0 ,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>]]]
sm1_reduction
, sm1_rat_to_p
Go to the first, previous, next, last section, table of contents.