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What is D?

• Let D be the ring of differential operators of n variables

D = C〈x1, . . . , xn, ∂1, . . . , ∂n〉
where

xixj = xjxi, ∂i∂j = ∂j∂i, ∂ixj = xj∂i + δij.

D acts on spaces of functions by

xi • F (x) = xiF (x), ∂i • F (x) =
∂F

∂xi
.

Example: ∂1x1 = x1∂1 + 1, ∂1x2
1 = x2

1∂1 + 2x1.

• A system of linear partial differential equations is a left ideal I

in D;

L1 • f = · · · = Lm • f = 0 ⇒ I = DL1 + · · ·+ DLm (a left ideal).



Algorithms for D-modules
Applications⇒
• Algebraic Geometry (de Rham cohomology, b-functions, ...)

Saito,Sturmfels, Takayama : Gröbner Deformations

of Hypergeometric Differential Equations, 2000, Chapter 5.

Oaku, D-modules and Computational Mathematics, 2002

R.Baloul, A.Leykin, Y.Nakamura, H.Tsai, U.Walther, ...

• Hypergeometric Functions

[SST], Chapters 1, 2, 3, and 4.

(E.Miller), M.Hertillo, L.Matsusevich, T.Tsushima, ...

• Automatic theorem proving of special function identities

Petkovsek, M., Wilf, H.S., Zeilberger, D., A = B 1996

• Numerical Analysis (New!): Preprocessing for numerical analysis

of systems of linear differential equations

3 hypergeometric differential equations, holonomic system



Q. What is hypergeometric function?

We call a definite integral of a product of exponential functions

and power functions (with parameters) a hypergeometric function.

Example:

F (α, β, γ;x) =
∫ 1

0
tβ−1(1− t)γ−β−1(1− tx)−αdt

Example:

F (β1, . . . , βd;x1, . . . , xn) =
∫

C
exp(f(x, t1, . . . , td))t

−β1−1
1 · · · t−βd−1

d dt1 · · · dtd

Here, f is a polynomial in x and t. For example, we consider

f(x, t) = x1t31 + x2.

Parameters in exponents are usually written in Greek letters. Pa-

rameters appearing as coefficients of a polynomial are usually writ-

ten in x, y, ...



Differential equations for hypergeometric functions
Th. (Well-known) Hypergeometric functions satisfy holonomic sys-
tems for the variable x = (x1, . . . , xn). In other words, any hy-
pergeometric function is a solution of a system of linear partial
differential equations in x and

dim(the ideal generated by the principal symbols) = n.

Proof. The integral kernel has a structure of holonomic D-module.
The general theory of D-modules says that “integral of a holo-
nomic D-module in the sense of D-module is again a holonomic
D-module.” Q.E.D.

Reference for “...”. Björk, Rings of differential operators, Chapter
1. “If M is holonomic, then M/∂nM is holonomic.”
Example:

F (β;x1, x2) =
∫

C
exp(x1t + x2t2)t−β−1dt

(x1∂1 + 2x2∂2 − β) • F = (∂2
1 − ∂2) • F = 0



Q. Why numerical analysis of hypergeometric functions?

Numerical evaluation of functions is an elementary question, but

it is a fundamental problem and is related to a lot of advanced

problems.

Applications: (1) Numerical check (verification?) of formulas in

a digital formula book (with Y.Tamura et al). (2) Expecting to

apply for determination of monodromy groups. (3) Expecting to

apply for engineering problems like the digital signal processing

(with Shiraki (NTT)).



Q. Explain the outline of your numerical evaluation method.

We can expect to obtain substantial information on hypergeo-

metric functions by studying the differential equations which it

satisfies, rather than dealing with the function itself.

Outline of our method

Step 1 Finding a system of partial differential equations for a given

hypergeometric function

Step 2 Construction of series solutions around the singular locus.

Step 3 Finding ordinary differential equations from the system of

partial differential equations to apply standard numerical methods

such as the adaptive Runge-Kutta method.



We have a system of linear partial differential equations for a

hypergeometric function. We want solve the system of differ-

ential equations numerically in the domain where series do not

converge. However, we cannot apply standard methods of nu-

merical analysis for the system. So, we need to translate the

system into a system for which we can apply methods like the

(adaptive) Runge-Kutta method.

↓

The translation can be done by Gröbner basis.



Step 3

Finding ordinary differential equations from a system of

partial differential equations to apply standard numerical

methods such as the adaptive Runge-Kutta method.



Q. What are initial term and initial ideal?

• For ` ∈ D and u, v ∈ Rn such that ui + vi ≥ 0, in(u,v)(`) is the

sum of the heighest weight terms of ` with respect to (u, v). Here

u = (u1, . . . , un) stands for x = (x1, . . . , xn) and v stands for ∂.

Example: initial term

in(0,0,1,1)(∂
2
1 + ∂2 + ∂1 + x2

1 + x2
2) = ξ21 ∈ C[x, ξ]

in(−1,−1,1,1)(x1∂1 + 2x2∂2 − 3) = x1∂1 + x2∂2 − 3 ∈ D (u + v = 0).

• The principal symbol σ(`) is nothing but in(0,1)(`)

in(u,v)(I) = C · {in(u,v)(`) | ` ∈ I} initial ideal

D/I is called holonomic when dim in(0,1)(I) = n.



Q. What is Gröbner basis (involutive basis)?
Example:

σ(I) = in(0,0,1,1)(I) = 〈x1ξ1 + 2x2ξ2, ξ21〉
L1 = x1∂1 + 2x2∂2 − 3, L2 = ∂2

1 − ∂2
L1 + 2x2L2 = x1∂1 − 3 + 2x2∂2

1 → 0

G = {g1, . . . , gp} is called Gröbner basis of I w.r.t. the weight (u, v)
when
(1) I is generated by G. (2) in(u,v)(I) is generated by in(u,v)(G).

How to obtain the basis? → (0) Generate a “new element”. (1)
Reduce the element by a division algorithm. (2) The Buchberger
criterion gives a condition to stop to generate a new element.
(Buchgerger algorithm).

If we change the weight (u, v), then we can translate a set of

generators into a different set of generators, which may have

a nice property for a given purpose.



How to numerically solve in case of a system of polynomials?

f1(y1, . . . , yn) = 0

· · ·
fp(y1, . . . , yn) = 0

J is the ideal generated by f1, . . . , fp ∈ Sn = Q[y1, . . . , yn].

Th. (WN) If J is zero-dimensional in Sn, in other words,

dimQ Sn/J < +∞, then J ∩Q[yi] contains a non-zero element,

in other words, J contains an algebraic equation in one variable

f(yi). The element can be obtained by computing a Gröbner

basis of J with the weight vector such that the weights for

variables except yi is 1 and the weight for yi is 0.

⇒ Numerically solve f(yi) = 0 (relatively easy). Determine other

yj from this solution. [Triangulation, cf. CS method].



Example: Robot arm with two joints. ci = cos θi, si = sin θi



Example: Robot arm with two joints. ci = cos θi, si = sin θi

def foo0(A,B) {
F = [l3*(c1*c2-s1*s2)+l2*c1 - a,

l3*(s1*c2+s2*c1)+l2*s1 - b,
c1^2+s1^2-1,
c2^2+s2^2-1];

F = base_replace(F,[[l2,1],[l3,2],[a,A],[b,B]]);
V = [c2,s2,c1,s1];
G0 = hgr(F,V,2);
return G0;

/* G0 = hgr(F,V,0); U = minipoly(G0,V,0,s1,s1); */
}

G2=foo0(11/10,21/10);

[-56200*s1^2+55020*s1-5061,-110*c1-210*s1+131,

2200*s2+5620*s1-2751,-200*c2+31]

pari(roots,G2[0]);

[ 0.1027736950248033986 0.8762298636940578112 ]



Q. Is there a D-analogy of this method?

• R = C(x1, . . . , xn)〈∂1, . . . , ∂n〉.
Example: ∂1

(
x1

1−x2

)
∂1 =

(
x1

1−x2

)
∂2
1 + 1

1−x2
∂1.

Let I be a left ideal in D. Consider J = RI.

Th. (WN=well-known) If I is holonomic, then RI is zero-dimensional,

i.e.,

dimQ(x1,...,xn) R/(RI) < +∞.

Th. (WN) If J is zero-dimensional in R, then J∩C〈x, ∂i〉 contains

a non-zero element (ordinary differential equation with respect

to xi),

which can be found, for example, by the Buchberger algorithm to

obtain Gröbner basis with the weight vector

(0, . . . ,0; 1,1, . . . ,1,0,1, . . . ,1)



Q. Show me an example of numerical evaluation?

Example: (Bessel function in two variables, Okamoto-Kimura)

f(a;x, y) =
∫

C
exp(−1

4
t2 − xt− y/t)t−a−1dt

where C = ~01+{e2π
√−1θ | θ ∈ [0,2π]}+ ~10. The function f(a;x, y)

satisfies the holonomic system

∂x∂y + 1, ∂2
x − 2x∂x + 2y∂y + 2a,2y∂2

y + 2(a + 1)∂y − ∂x + 2x

The rank of the system is 3. Take a = 1/2. It admits a unique

solution of the form y−ag(x, y) such that g is holomorphic at the

origin and g(0,0) = 1.



def bess2_ode_y(A) {
F = [dx*dy+1 , dx^2-2*x*dx+2*y*dy+2*a , 2*y*dy^2+2*(a+1)*dy-dx+2*x];
F = base_replace(F,[[a,A]]);
G = sm1_gb([F,[x,y],[[dx,1]]]);
return G[0];

}

bess2_ode_y(1/2);

[-dx+2*y*dy^2+3*dy+2*x,-2*y*dy^3-5*dy^2-2*x*dy-1]

Singular locus is y = 0.

Equations for g where f = y−ag and f satisfies the Bessel differ-
ential equations above :
4*y^2*dy^3+4*y*dy^2+(4*y*x-1)*dy-2*x+2*y, ...

Solve this ordinary differential equation numerically.

Series solution g such that g(0,0) = 1:
(1)+(-1/3*y^2)+(-2*y*x)+(1/210*y^4)+(2/15*y^3*x)+(2/3*y^2*x^2)+ ...

How to construct this solution? =⇒ disscuss later.



Q. Is it the ultimate method?

No. This method has several disadvantages. For example, finding

the generator of

Q(x1, . . . , xn)〈∂i〉 ∩ I

is time consuming and the generator often has an “apparant sin-

gularity”.

Q. Is there a FGLM-like method?

Yes.



Case of polynomials

Th. Let yα(1), . . . , yα(r) be the basis of Q[y1, . . . , yn]/I as a vector

space over Q. There exist matrices M1, . . . , Mn ∈ M(r, r,Q) such

that

y1




yα(1)

·
·

yα(r)




= M1




yα(1)

·
·

yα(r)




mod I

· · · · · ·
· · · · · ·
· · · · · ·

yn




yα(1)

·
·

yα(r)




= Mn




yα(1)

·
·

yα(r)




mod I



D-analogy

Let ∂α(1), . . . , ∂α(r) be the basis of Q(x1, . . . , xn)〈∂1, . . . , ∂n〉/I as a

vector space over Q(x1, . . . , xn). There exist matrices P1, . . . , Pn ∈
M(r, r,Q(x)) such that

∂1




∂α(1)

·
·

∂α(r)




= M1




∂α(1)

·
·

∂α(r)




mod I

· · · · · ·
· · · · · ·
· · · · · ·

∂n




∂α(1)

·
·

∂α(r)




= Mn




∂α(1)

·
·

∂α(r)




mod I



Put F = (∂α(1) • f, . . . , ∂α(r) • f)T . Solve the ordinary differential
equations

∂1 • F = P1F

· · · · · ·
· · · · · ·
· · · · · ·

∂n • F = PnF

∂α(i) ⇒ θα(i), θi = xi∂i (sometimes more simpler)

Example: (Bessel differential equation in two variables, a = 1/2)
F = (f, ∂y • f, ∂x • f)T

P1 =




0 0 1

−1 0 0

−1 −2y 2x


 ,

P2 =




0 1 0
−x
y

−3
2y

1
2y

−1 0 0






x ∈ [0.0,1.4] (step size : 0.1), y ∈ [0.2,9.0],

2.037sec + gc : 0.4651sec

Risa/Asir, Version 20021209 (Kobe Distribution).
FreeBSD 3.4-STABLE
CPU: Pentium III/Pentium III Xeon/Celeron (1129.43-MHz 686-class CPU)
real memory = 2147418112 (2097088K bytes)



Systems for D?

D-module algorithms for algebraic geometry ,

kan/sm1 (http://www.math.kobe-u.ac.jp/KAN),

Macaulay2 (http://www.math.uiuc.edu/Macaulay2).

Other packages

Ore algebra packages (F.Chyzak) in Maple (general, merged in

Maple).

bfct package (M.Noro) in Risa/Asir (Efficient computation of b

function).

yang package (K.Ohara) in Risa/Asir (general, simple, merged in

Risa/Asir).

Plural (general, inherits Singular functions).



Step 2

Construction of series solutions around the singular locus.



Q. Why do we need to find series solutions?

Numerical recipes for hypergeometric functions

• Series solutions provide the best way for numerical evaluation

out of a neighborhood of the border of the domain of conver-

gence.

• Solving hypergeometric differential equation by the adaptive

Runge-Kutta method is a reasonably nice method for numerical

evaluation.

• Numerical integration (e.g. Barns integral representation) is

sometimes useful.

• Use of series solution is necessary around the singular locus.

(Conditions for solutions are often given as an asymptotic prop-

erties.)



J.Van der Hoeven : Journal of Symbolic Computation (2001),

717–743. Numerical evaluation of holonomic functions in one

variable. Complexity of numerical analytic continuation by the

binary splitting algorithm.



Q. Show me an example in which series is better than numerical integration.

Example: Evaluate numerical value of the left hand side

F (
1

12
,

5

12
,
1

2
;
1323

1331
) =

3

4
4
√

11 (Beukers, 1993)

where

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0
tb−1(1− t)c−b−1(1− tz)−adt

• Numerical Integration:

F (
1

12
,

5

12
,
1

2
;
1323

1331
)

= −555146934690291893170809321

77265229938688
F (−31

12
,
37

12
,
13

2
;
1323

1331
)

+
23008497055530190854682531919

4017791956811776
F (−31

12
,
37

12
,
15

2
;
1323

1331
)

It takes about 9 seconds to get the value in the accuracy 10−4.



• Solving differential equation:

F (a, b, c; z) satisfies the differential equation:

z(1− z)f ′′ + (c− (a + b + 1)z)f ′ − abf = 0

f(0) = 1.

It takes about 2 seconds to get the value in the accuracy 10−4 by

the adaptive Ruge-Kutta method (4th order).

• Evaluating series which is obtained from the differential equation:

F (a, b, c;x) =
∞∑

n=1

(a)n(b)n

(1)n(c)n
xn,

(a)n = a(a + 1) · · · (a + n− 1).

It takes less than 1 second to get the value in the accuracy 10−4



Q. How to construct series solutions around singularities?

In case of 1 variable, the Frobenius method and the Hukuhara-

Turritin reduction are explained in text books (cf. DEtools in

Maple). How about several variable case?

Th. (Hosono, Lian, S.T.Yau, 1996, 97) Construction of series so-

lutions of GKZ systems for reflexive polytopes and a degenerate

β. The main idea of the construction is the use of in(−w,w)(IA).

Th. (SST, 1998. cf. vanishing cycle sheaf: Kashiwara, Laurent).

Suppose that D/I is regular holonomic. The rank of I is equal to

the rank of in(−w,w)(I).

Th. (SST, 2000). Suppose that D/I is regular holonomic. A con-

struction algorithm of series solution basis of I at the boundary of

(C∗)n. The main idea of the construction is the use of in(−w,w)(I)

(theorem above).

• (Open Question) Construct series solutions around the irregular

singular point of holonomic system with the help of Villamayor’s

algorithm for resolution of singularities (cf. Majima, Bodnar, Schi-

cho).



Step 1

Finding a system of partial differential equations for a given

hypergeometric function (integral)



Q. What is holonomic function?

• A muli-valued analytic function f defined on (the universal cov-

ering of) Cn\S with an algebraic set S of Cn is called a holonomic

function if there exists a left ideal I of D so that M = D/I is a

holonomic system and Pf = 0 holds on Cn \ S for any P ∈ I.

Example: Hypergeometric function is a holonomic function.



Operations for holonomic functions

Problems:

1. Given two holonomic functions f , g and two differential oper-

ators P , Q, find a holonomic system which the function Pf + Qg

satisfies;

2. Given two holonomic functions f , g, find a holonomic system

which the function fg satisfies;

3. Given a holonomic function f(t, x), find a holonimic system

which the integral
∫
C f(t, x) dt satisfies.

• Partial algorithms for computing differential equations for sums,

products, and integrals of holonomic functions. cf. The book

A = B by Petkovsek, M., Wilf, H.S., Zeilberger, D.. A lot of

interesting and mathematically important examples.



Th. (Oaku-T) These constructions can be algorithmically

done. If the inputs are holonomic, then the output is holo-

nomic.

The algorithm is based on a restriction/integration algorithm of

D-modules by Oaku (1997) and a localization algorithm by Oaku,

Takayama, Walther (2001). We use the Buchberger algorithm,

especially the initial ideal in(−w,w)(I) plays an inportant role.

Proof sketch is written in the proceedings. The core of this algo-

rithm is the integration algorithm.



Q. What is the integral of a D-module?

Let I be a left ideal of Dn+m. M = Dn+m/I is a left Dn+m-
module.
Definition (integral of M , J.Bernstein (1971), ...):
∫

Mdxn+1 · · · dxn+m := Dn+m/(I +∂n+1Dn+m + · · ·+∂n+mDn+m)

Th. (Oaku) If M = Dn+m/I is holonomic and (J, k1) = integral0(I),
then

∫
Mdxn+1 · · · dxn+m '




∑

αn+1+···+αn+m≤k1

Dnxα


 /J

Cor. Suppose that f(x1, . . . , xn+m) is a holonomic function and
I • f = 0. Put J0 = J ∩ Dn where (J, k1) = integral0(I). Then,
Dn/J0 is holonomic and

J0 •
∫

C
f(x1, . . . , xn+m)dxn+1 · · · dxn+m = 0

for a suitable cycle C.



Q. Show me an example of the integral of a D-module?

Put t = x3, f(x1, x2, t) = exp(x1t2 + x2t),

I = 〈∂t − (2tx1 + x2), ∂1 − t2, ∂2 − t〉.
Gröbner basis for (0,0,1,0,0,−1):

[ -t +Dx2, -2*t*x1 -x2*h+Dt*h, -t^2 +Dx1*h, 2*x1*Dx2+x2*h -Dt*h,

-Dx2^2+Dx1*h, -2*x1*Dx1*h-x2*Dx2*h-h^3 +Dt*Dx2*h ]

b(s) = s

integral0(I) = ({2x1∂2 + x2,−∂2
2 + ∂1,−2x1∂1 − x2∂2 − 1},0)

F (x1, x2) =
∫

C
exp(x1t2 + x2t)dt

is annihilated by {2x1∂2 + x2,−∂2
2 + ∂1,−2x1∂1 − x2∂2 − 1}.



Notations for integral0

• Weight (w,−w)

x1, . . . , xn :0 , xn+1, . . . , xn+m : 1,

∂1, . . . , ∂n :0 , ∂n+1, . . . , ∂n+m : -1

• Left normally ordered expression

lno(`) =
∑

apqx
p∂q, ` ∈ D, ` =

∑
apqx

p∂q in D

• Right normally ordered expression

rno(`) =
∑

apq∂
pxq, ` ∈ D, ` =

∑
apq∂

pxq in D

• (u, v)-order

ord(u,v)(axα∂β) = u · α + v · β



Q. What is the algorithm integral0?

• Input: I, a left ideal in Dn+m.
Step 1: Compute a Gröbner basis G of I for the weight vector
(w,−w).
Step 2: Find the generator b(s) of

in(w,−w)(I) ∩K[s], s = −(∂n+1xn+1 + · · ·+ ∂n+mxn+m)

Step 3: Let k1 be the maximal non-negative integral root of b(s) =
0. If there is no such k1, then return ({1},0), else

J = {rno(xαgi) |ord(w,−w)(x
αgi) ≤ k1, gi ∈ G}|∂n+1=···=∂n+m=0

where xα = x
αn+1
n+1 · · ·x

αn+m
n+m .

return (J, k1).

Note that J is a submodule in Dn free module of finite rank
∑

αn+1+···+αn+m≤k1

Dnxα



References for integral0

• H.Wilf, D.Zeilberger, An algorithmic proof theory for hyperge-

ometric (ordinary and ”q”) multisum/integral identities. Invent.

Math. 108 (1992), 575–633. (yielded a lot of interesting exam-

ples, but heuristic method)

• T.Oaku, Algorithms for b-functions, restrictions, and algebraic

local cohomology groups of D-modules. Advances in Applied

Mathematics 19 (1997), 61–105. (0-th integral (integral0))

• M.Saito, B.Sturmfels, N.Takayama, Gröbner Deformations of

Hypergeometric Differential Equations. (Book), Algorithms and

Computation in Mathematics 6, Springer, 2000. (General weight

vector, Speed up of Step 1)

• T.Oaku, N.Takayama, Algorithms for D-modules – restriction,

tensor product, localization, and algebraic local cohomology groups.

Journal of Pure and Applied Algebra 156 (2001), 267–308. (k-th

integral, cohomological integration)

• M.Noro, An efficient modular algorithm for computing the global

b-function, proceedings ICMS 2002, 147–157. (Speed up of Step

2)



Q. Why localization?

Th. (WN) If I is holonomic, then RI is zero-dimensional.

Zero-dimensionality does not imply holonomy.

Example: Find a holonomic annihilating ideal of (x3
1 − x2

2)
−1.

Trivila annihilating operators (x3
1 − x2

2)∂1 − 3x2
1, (x3

1 − x2
2)∂2 + 2x2

is not holonomic, but dimK(x1,x2)
R/RI = 1 (zero-dimensional).

〈(x3
1 − x2

2)ξ1, (x3
1 − x2

2)ξ2〉 (characteristic ideal. Dimension is 3. It

is not holonomic.)

• For given zero-dimensional I, can we construct Ĩ such that Ĩ ⊆ I

and Ĩ is holonomic? ⇒ Yes.

Example: (x3
1 − x2

2)∂1 − 3x2
1, (x3

1 − x2
2)∂2 + 2x2,

2x2∂1 + 3x2
1∂2, 2x1∂1 + 3x2∂2 + 6 (Missing equations)



Q. What is the localization algorithm?

Input: {`1, . . . , `p} generators of a zero-dimensional ideal and an-

nihilates a function g.

Output: an ideal Ĩ such that Dn/Ĩ is holonomic.

xn+1 : a new variable.

f : f = 0 contains the non-holonomic point (,i.e., point where the

local dimension of the characteristic variety > n).

φ : D 3 P 7→ P|∂i 7→∂i−x2
n+1fi∂n+1

, fi =
∂f

∂xi

Step 1: Put In+1 = {φ(`1), . . . , φ(`m),1−fxn+1}. Call integral0(In+1)

with respect to xn+1.

Step 2: Let (J, k1) be the output of Step 1. Compute J̃ =

J ∩D · xk1
n+1. ( J̃ annihilates g/fk1+2. )

Step 3: Compute Ĩ from J̃.

O-T-Walther (2000), cf. H.Tsai (2001).



Example of localization

Let n = 3, and consider the ideal J generated by the system

(x3 − y2z2)2∂x + 3x2,

(x3 − y2z2)2∂y − 2yz2,

(x3 − y2z2)2∂z − 2y2z.

These operators are annihilators of the exponential function e1/f

where f(x, y, z) = x3 − y2z2, but it is not holonomic.

Applying the localization algorithm, we obtain

−3y∂y + 3z∂z, −2xyz2∂x − 3x3∂y − 4yz2, −2xy2z∂x − 3x3∂z − 4y2z,

6xz3∂x∂z + 9x3∂2
y + 6xz2∂x + 6yz2∂y + 6z3∂z + 12z2,

−6y2z3∂z + 4x4∂x + 12x3z∂z + 8x3 + 12,

6yz4∂2
z − 4x4∂x∂y − 12x3z∂y∂z + 18yz3∂z − 8x3∂y − 12∂y,

8x5∂2
x + 24x4z∂x∂z + 18x3z2∂2

z + 64x4∂x + 102x3z∂z + 80x3 + 24x∂x + 48,

−6z5∂3
z + 4x4∂x∂2

y + 12x3z∂2
y ∂z − 36z4∂2

z + 8x3∂2
y − 36z3∂z + 12∂2

y

which annihilate the function x−2e1/f and holonomic.



Application to Digital Formula Book

Q. Are there mathematical formula books on computer?

(1) http://functions.wolfram.com

(2) Sasaki’s formula book project (1980’s) based on the formula

book from Iwanami publ. co. (cont. Morinaga, Murakami 2003)

(3) ...



What is OpenMath?

OpenMath:®



©

ª
The OpenMath is an XML application to describe mathematical objects.
Emphasis on semantics.
Started about 1997. EU project.
http://www.openmath.org/

Example: 1 + x
In TEX, $1+x$

In presentation MathML (http://www.w3c.org),

<mrow>

<mn>1</mn>

<mo>+</mo>

<mi>x</mi>

</mrow>

These expressions lose some semantic information.

OpenMath keeps semantic information and it is extensible by using
content dictionaries.



OpenXM/fb project based on OpenMath

(Thesis by Y.Tamura (2003))

Digital formula book project OpenXM/fb.

http://www.openxm.org

The project is editing a formula book for hypergeometric functions

by utilizing OpenMath XML.

<?xml version="1.0" encoding="ISO-2022-JP"?>
<formula>

<title>
Quadratic transformation of an independent variable

</title>
<author> E. Goursat </author>
<editor> Yasushi Tamura </editor>

<tfb macroset="http://www.openxm.org/fb/hfb.txt">
2 * arith1.root(nums1.pi,2)

* hypergeo0.gamma(a + b + (1 / 2))
/ hypergeo0.gamma(a + (1 / 2))
/ hypergeo0.gamma(b + (1 / 2))
* hypergeo1.hypergeometric2F1(a,b,1 / 2,x)

~relation1.eq~
(hypergeo1.hypergeometric2F1(2 * a, 2 * b, a + b + (1 / 2),



1 + arith1.root(x,2) / 2)
+ hypergeo1.hypergeometric2F1(2 * a, 2 * b, a + b + (1 / 2),

1 ~arith1.minus~ arith1.root(x,2) / 2));
</tfb>

<description>
Quadratic transformation of independent variable

</description>
<reference>

<xref uri="http://www.openxm.org/fb/bib-goursat1.xml"
linkend="goursat1" page="118"/>

</reference>
<evidence checker="Mathematica">

@@ /. {a->1/2,b->3/5,c->-2/11,x->0.2}
</evidence>

</formula>

This code describes the formula

2
√

π Γ(a + b + 1
2
) 2F1(a, b, 1

2
, x)

Γ(a + 1
2
)Γ(b + 1

2
)

= 2F1(2 a,2 b, a+b+
1

2
,
1−√x

2
)+2F1(2 a,2 b, a+b+

1

2
,
1 +

√
x

2
)

which was found by E.Goursat more than a century ago.



Summary

Outline of our evaluation method for HG functions

• Finding a system of partial differential equations for a given

hypergeometric function

• Construction of series solutions around the singular locus.

• Finding ordinary differential equations from the system of paritial

differential equations to apply standard numerical methods such

as the adaptive Runge-Kutta method.

Todo:

(1) Efficiency both in algebraic part and numerical part should

be studied more.

(2) Estimation of numerical error.

(3) Series expansion at irregular singular points.

(4) Examples in signal processing.


