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Abstract. Kummer type formulas are identities of hypergeometric series. A sym-
metry by the permutations of n-letters yields these formulas. We will present an
algorithmic method to derive known and new Kummer type formulas. The algo-
rithm utilizes several algorithms in algebra and geometry for generating Kummer
type formulas.

1 Introduction

The Gauss hypergeometric function is defined by the series

F (a, b, c;x) =
∞∑
n=0

(a)n(b)n
(1)n(c)n

xn, (a)n = a(a+1) · · · (a+n−1) = Γ (a+n)/Γ (a)

where a, b, c are complex parameters and we assume c 6∈ Z<0. The series
in the right hand side converges in the unit disk and F (a, b, c;x) can be
analytically continued to C \ {0, 1} as a multi-valued analytic function. The
Gauss hypergeometric function satisfies several attractive formulas. Among
them, we will consider Kummer’s formula

F (a, b, c;x) = (1− x)−aF
(
a, c− b, c; x

x− 1

)
and its generalizations in this article.

There are several methods to prove it. Among them, we here refer to
a method by the Chu-Vandermonde formula of binomial coefficients [19].
Although this proof presents an interesting interplay between the famous
identity in combinatorics and Kummer’s formula, it seems hard to generalize
this approach.

I.M.Gel’fand suggested an idea to derive and prove Kummer’s formula in
his series of lectures at Kyoto in 1989. The method is a natural generaliza-
tion of the method to derive 24 = 4! solutions of the Gauss hypergeometric
equation by Kummer. The point of his idea is that the method can be also
applied to hypergeometric functions associated to the product of simplices,
which have the symmetry of permutations of n-letters.

Since his presentation of the idea, there have been only a few tries to study
systematically Kummer type formulas (see, e.g., [15]). The author thinks that
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the reason for it is the lack of integrations of algebra and geometry software
systems. As readers will see in the body of this paper, the systematic study
of Kummer type formulas requires several kinds of explicit constructions in
algebra and geometry including Gröbner basis computation, triangulations,
and constructions of fans, for which algorithms and systems have been inten-
sively studied in the last 10 years.

In this article, we will present an algorithm to derive Kummer type for-
mulas for hypergeometric functions associated to the product of simplices
developing the original idea by I.M.Gel’fand. We can experience an interplay
between algebra, geometry and software systems through deriving Kummer
type formulas of hypergeometric functions.

2 Hypergeometric Function Associated to
∆k−1 ×∆n−k−1

Let us recall the definition of hypergeometric functions associated to a prod-
uct of linear forms [1], [8]. We fix two numbers k and n satisfying n ≥ 2k ≥ 4.
Let αj be parameters satisfying

∑n
j=1 αj = −k. Hypergeometric function of

type Ek,n is defined by the integral

Φ(α; z) =
∫
C

n∏
j=1

(
k∑
i=1

zijsi)αjds2 · · · dsk

where we put s1 = 1 and z ∈Mk,n = the space of k × n matrices and C is a
bounded (k−1)-cell in the hyperplane arrangement defined by

∏n
j=1

∑k
i=1 zijsi =

0 in the (s2, . . . , sk)-space.
When k = 2, n = 4, it is written as

Φ(α; z) =
∫
C

(z11 + z21s2)α1 · · · (z14 + z24s2)α4ds2.

The integral Φ(z) agrees with the Gauss hypergeometric integral when z =(
1 0 1 1
0 1 −1 −x

)
.

The hypergeometric function of type Ek,n is quasi-invariant under the ac-
tion of complex torus (C∗)n and the general linear group GL(k) = GL(k,C).

In fact, we have for h =


h1 0 0
0 h2 0
0 0 · · · 0
· · · · · ·
0 0 · · · hn

 ∈ (C∗)n and g ∈ GL(k),

Φ(α; zh) =

∏
j

h
αj
j

Φ(α; z), (1)

Φ(α; gz) = |g|−1Φ(α; z). (2)
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It follows from the quasi-invariant property and the integral representation
that the function Φ(α; z) satisfies a system of first order equations and a
system of second order equations respectively.

Theorem 1. (Gel’fand [8]) The function Φ(α; z) satisfies(
k∑
i=1

zip
∂

∂zip
− αp

)
f = 0, p = 1, . . . , n(

n∑
p=1

zip
∂

∂zjp
+ δij

)
f = 0, i, j = 1, . . . , k

(
∂2

∂zip∂zjq
− ∂2

∂ziq∂zjp

)
f = 0, i, j = 1, . . . , k, p, q = 1, . . . , n

We call this system of equations Ek,n.
Let A = (aij) be an integer d × N -matrix of rank d and β a vector

over complex numbers (β1, . . . , βd)T . The A-hypergeometric (GKZ hyperge-
ometric) system HA(β) is the following system of linear partial differential
equations for the indeterminate function f(x1, . . . , xN ): N∑

j=1

aijxj∂j − βi

 f = 0, for i = 1, . . . , d

(∂u − ∂v)f = 0 for all u, v ∈ NN
0 with Au = Av.

Here, we use the multi-index notation ∂u =
∏N
i=1 ∂

ui
i .

TheA-hypergeometric system was first introduced and studied by Gel’fand,
Kapranov and Zelevinsky [9].

If we restrict the system of differential equations in Theorem 1 to the
affine chart 

1 · · · 0 x11 · · · x1`

0 · · · 0 x21 · · · x2`

0 · · · 0 · · ·
0 · · · 1 xk1 · · · xk`

 , ` = m− k

of GL(k)\Mk,n, we obtain the A-hypergeometric system associated to the
product of simplices ∆k−1 ×∆n−k−1. More precisely, put

a1 =


1
0
·
·
0

 , . . . , an−k =


0
0
·
·
1

 ∈ Zn−k,
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Ak,n =



1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 1 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0 0 · · · 0
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
0 · · · 0 0 · · · 0 1 · · · 1
a1 · · · an−k a1 · · · an−k a1 · · · an−k


,

and β = (−α1 − 1, . . . ,−αk − 1, αk+1, . . . , αn)T . Then, the restricted sys-
tem of Ek,n is the A-hypergeometric system HAk,n(β) with x1 = x11, x2 =
x12, . . . , x` = x1`, x`+1 = x21, . . . , xN = xk`. Note that, by using the GL(k)-
quasi-invariant property (2), solutions of Ek,n can be expressed in terms of
solutions of HAk,n(β). We will present later some explicit constructions of
solutions of E2,4 and E2,5.

3 Configuration Space

We denote by Xk,n the quotient space

GL(k)\M∗k,n/(C∗)n.

Here, M∗k,n denotes the set of the k×n matrices of which any k×k minor does
not vanish. The space Xk,n is called the configuration space of n-points in
the (k−1)-dimensional project space. It is a (k−1)× (n−k−1) dimensional
affine variety. The group of the permutations of n-columns of Mk,n acts on
Xk,n. We denote the group by Sn.

Regular functions on M∗k,n which are invariant under the action of GL(k)
and (C∗)n are regular functions on Xk,n. Let us denote by

yi1,···,ik

the determinant of (i1, . . . , ik)-th columns of the k×n matrix z = (zij), which
is called the Plücker coordinate. Then, the affine chart xij of GL(k)\M∗k,n is
expressed as

xij =
y1,2,···,i−1,k+j,i+1,···,k

y1,2,···,k
, (3)

which is invariant under the action of GL(k).
Let us take a vector

p = (pij) ∈ Ker Zk×(n−k) Ak,n−→ Zn.

Then, it is easy to see that xp =
∏
x
pij
ij is invariant as a function of y =

(yi1,...,ik) by the actions of GL(k) and (C∗)n. Hence, xp is a regular function
on the configuration space Xk,n.
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Let σ be an element of Sn. The action of σ on xp is defined as

σ • xp =
∏
i,j

(
yσ(1),σ(2),···,σ(i−1),σ(k+j),σ(i+1),···,σ(k)

yσ(1),σ(2),···,σ(k)

)pij
(4)

The action induces a biholomorphic transformation on Xk,n.

Example 1. k = 2, n = 4
The configuration space X2,4 is isomorphic to P1 \ {0, 1,∞} = C \ {0, 1}. An
isomorphism is given by

X2,4 3 (zij) 7→
y4,2y1,3

y3,2y1,4
= x ∈ C \ {0, 1}.

We denote the Plücker coordinate yij by [ij]. Then, the action of S4 on
C1 \ {0, 1} is summarized as follows.

x :=
[42][13]
[32][14]

(12) • x =
[41][23]
[31][24]

=
1
x

(23) • x =
[43][12]
[23][14]

=
[43][13]
[32][14]

− 1 = x− 1

([42][13]− [41][23] + [21][43] = 0, Plücker’s relation)

(34) • x =
1
x

Here, for example, (23) means
(

1 2 3 4
1 3 2 4

)
∈ S4.

Example 2. k = 2, n = 4
The configuration space X2,5 is isomorphic to

X = C2 \ {(x, y) |xy(x− 1)(y − 1)(x− y) = 0}

by the isomorphism

X2,5 3 (zij) 7→
(

[42][13]
[32][14]

,
[14][52]
[42][15]

)
= (x, y) ∈ X

where [ij] = yi,j . The action of S5 is as follows.

(12) • x =
1
x
, (12) • y =

1
y

(23) • x = 1− x, (23) • y =
1− xy
1− x

(34) • x =
1
x
, (34) • y = xy

(45) • x = xy, (45) • y =
1
y



6 Nobuki Takayama

where Plücker relations
2∑
k=0

(−1)kyi1,jkyj0,···,ĵk,···,j2 = 0

are used to reduce expressions in yij into expressions in x and y. The index
sets {i1} and {j0, j1, j2} run over the subsets of {1, 2, 3, 4, 5}. For instance,
when i1 = 1 and j0 = 3, j1 = 4, j2 = 5, the relation is y1,3y4,5 − y1,4y3,5 +
y1,5y3,4 = 0.

We are interested in deriving explicit expressions of the action of Sn on
the configuration space Xk,n as in the two examples. It can be done by an
elimination. Put m = (k − 1)(n − k − 1), which is the dimension of the
configuration space Xk,n.

Data : x1 = yp(1)

yq(1) , . . . , xm = yp(m)

yq(m) : a system of local coordinates of
a compactification of Xk,n, and σ ∈ Sn.

Result : Polynomials fj and gj such that σ • xj = fj(x1,...,xm)
gj(x1,...,xm)

1. Put

P = {the Plücker relations, yi1,···,iky
∗
i1,···,ik − 1 |

i1, . . . , ik ⊂ {1, . . . , n}}.

Define

I = 〈P, yq(i)xi − yp(i) (i = 1, . . . ,m), (σ • yq(j))wj − (σ • yp(j))〉

as an ideal in

Q[y1,2,...,k, . . . , yn−k+1,...,n, y
∗
1,2,...,k, . . . , y

∗
n−k+1,...,n, x1, . . . , xm, wj ].

2. Find the ideal intersection J = Q(x1, . . . , xm)I ∩
Q(x1, . . . , xm)[wj ].
It is generated by an element of the form wj − fj(x)

gj(x) .

3. Output fj
gj

.

Algorithm 1: Action of Sn on the configuration space

The correctness follows from that the ideal generated by the Plücker rela-
tions is prime and hence radical. Here is a sketch of a proof of the primeness
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suggested by B.Sturmfels. “Establish the SAGBI basis property of the k×k-
minors and then to infer that the Plücker ideal is precisely the ideal of all
algebraic relations on the k × k-minors. This implies primeness, since the
kernel of a map from a domain to a domain is always prime.” Gröbner basis
of Plücker relations and the SAGBI argument are described in the chapter
three of the book by B.Sturmfels on invariant theory [17].

Elimination can be done by the characteristic set method or the Gröbner
basis method. Readers are invited to articles by M.Noro[10], H.Schönemann[14],
and D.M.Wang[20] in this volume for algorithms, implementations and re-
lated topics in this area.

We close this section with a short remark on efficiency. Although the
method above is simple, it seems that it is not the most efficient method to
explicitly derive the action of Sn on a coordinate system of the configuration
space. It seems more efficient to use a method based on transforming a given

k×n matrix to the normal form


1 0 · · · 0 1 1 · · · 1
0 1 · · · 0 1 ∗ · · · ∗

· · · 1 ∗ · · · ∗
· · · 1 ∗ · · · ∗

0 0 · · · 1 1 ∗ · · · ∗

 by the left

GL(k) and the right (C∗)n action.

4 Series solutions

Several methods to construct series solutions of A-hypergeometric system
have been known. Among them, we would like to mention here the following
two constructions.

Theorem 2. [9]

1. There is a correspondence between a regular triangulation T of A and a
basis of series solutions of HA(β) for generic β.

2. A translation of the secondary cone of a regular triangulation T of A is
the domain of convergence of the basis of series solutions associated to
T .

Theorem 3. [12] There is a construction algorithm of series solution basis
of HA(β) for any β. The series solutions are constructed by extending the
solutions of the initial ideal in(−w,w)(HA(β)) with respect to a given weight
(−w,w).

Details on these methods are explained in [9] and section 3.4 and chapter
two of the book [12]. Triangulations play an important role to construct series
solutions. Readers are invited to consult the article by J.Pfeifle and J.Rambau
[11] on algorithms and implementations for triangulations.

We will add one more note here. Series solutions can be analytically con-
tinued to the complement of the singular locus of HAk,n(β), of which defining
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equation is expressed in terms of sparse resultants. In case of A2,4, the defin-
ing equation is

x11x12x21x22(x11x22 − x12x21).

Readers are invited to the article by I.Emiris[6] on sparse resultants in this
book.

Let φ(α;x) be a series solution of Ak,n-hypergeometric system. Then, by
the quasi-invariant relation (2), the function

Φ(α; y) =
1

y1,2,...,k
φ(α;x(y)) (5)

is a solution of Ek,n where x(y) is a coordinate system defined in (3).
The invariant property of the system of equations Ek,n under the action

of Sn yields the following theorem.

Theorem 4. If the function Φ(α; y) is a solution of Ek,n, then the function
σ • Φ(α; y) := Φ(σ • α;σ • y) is also a solution of Ek,n for any σ ∈ Sn.

Example 3. k = 2, n = 4.

The matrix A2,4 is


x11 x12 x21 x22

1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1

. The hypergeometric system

HA2,4(β) is generated by

x11∂11 + x12∂12 − (−α1 − 1), x21∂21 + x22∂22 − (−α2 − 1),

x11∂11 + x21∂21 − α3, x12∂12 + x22∂22 − α3, ∂11∂22 − ∂12∂21

where ∂ij = ∂
∂xij

and α1 + α2 + α3 + α4 = −2. Take the triangulation
T = {124, 134} or the Gröbner deformation with respect to the weight

w = (0, 1, 1, 0) =
(

0 1
1 0

)
. Then the starting terms of series solutions

are xp and xq where p =
(
p11 p12

p21 p22

)
=
(
α3 −α1 − α3 − 1
0 −α2 − 1

)
and q =(

−α1 − 1 0
−α2 − α4 − 1 α4

)
. Note that

(
z11 z12

z21 z22

)−1

(zij) =

(
1 0 [32]

[12]
[42]
[12]

0 1 [13]
[12]

[14]
[12]

)
.

Then, we put x11 = [32]
[12] , x12 = [42]

[12] , x21 = [13]
[12] , x22 = [14]

[12] . By extending
the starting terms to series solutions, we obtain solutions of HA2,4(β) and
consequently those of E25:

η1F (−α3, α2 + 1,−α1 − α3; s)
η2F (−α4, α1 + 1,−α2 − α4; s)
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where s = x12x21
x11x22

= [42][13]
[32][14] and

η1 =
1

[12]
x−α1

12 x−α2
22

(
x11

x12

)α3 1
x12x22

η2 =
1

[12]

(
x21

x11

)α1

xα3
21x

α4
22

x21

x11
,

∑4
i=1 αi = −2. F is the Gauss hypergeometric function. We obtain |S4| = 24

fundamental sets of solutions by applying the Theorem 4.

5 Deriving Kummer Type Formulas

Let η1(y)φ1(α;x(y)), η2(y)φ2(α;x(y)), . . . , ηr(y)φr(α;x(y)) be a basis of so-
lutions of Ek,n. It follows from the quasi-invariant property (1) and (2) that
the quotient function

(σ • ηi(y))φi(σ • α;σ • x(y))/η1(y)φ1(α;x(y))

is a multi-valued analytic function on Xk,n for σ ∈ Sn. Since, the function
φ1(α;x(y)) is a multi-valued analytic function in Xk,n, the quotient function

(σ • ηi(y))φi(σ • α;σ • x(y))/η1(y)

is also a multi-valued analytic function on the configuration space Xk,n.
We take a coordinate system

s1 = x(y)p(1), s2 = x(y)p(2), . . . , sm = x(y)p(m) (6)

of a compactification of the configuration space Xk,n which satisfies the
condition: all φi(α;x(y)) can be expressed in a convergent power series of
s1, . . . , sm.

If we take a compatible basis {p(1), . . . , p(m)} [9], it satisfies the condition
above. And, we need a “small” basis in a suitable sense. However, the author
does not know an efficient method to find a compatible basis and does not
know what compatible basis is “small” for our purpose. They are questions
of geometry.

Now, we are ready to state our method to derive Kummer type formulas
of hypergeometric series associated to Ek,n.
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Data : ηi(y), φi(α;x(y)), sj = x(y)p(j)

Result : Kummer Type Formulas
Suppose that ηi(y)/η1(y), i ≥ 2 are not holomorphic at s1 = · · · = sm.

1. Let G be the isotropy group in Sn that fixes the point s1 = · · · =
sm.

2. for σ ∈ G do
consider functions {σ•ηiη1

| i = 1, . . . , r}. If the function σ•ηi
η1

is holo-
morphic at s1 = · · · = sm = 0 and other functions σ•ηj

η1
, j 6= i are

not holomorphic, then output

c
σ • ηi
η1

φi(σ • α;σ • x(y)) = φ1(α;x(y)). (7)

Here, c is a suitable constant. Note that the both sides are functions
in s1, . . . , sm.
end

Algorithm 2: Deriving Kummer type formulas

Since the formula (7) contains complex power functions, we have to be
careful about choices of branches. As to this topics, readers are invited to the
article of J.Davenport[4] in this book. The problem of choices of branches
in formulas on hypergeometric functions has a long history. For example,
É.Goursat gave connection formulas of the Gauss hypergeometric function
on the upper half plane and the lower half plane in his long paper in 1881 [7].
This approach of giving connection formulas on simply connected domains
is nice, however, most editors of formula books do not take his original nice
rigorous approach and list connection formulas without the side conditions
on branches. In the several variable case, the problem of finding a nice de-
composition into simply connected domains is more interesting and difficult.
See, for example, [22, Chapter V] and [13].

Example 4. k = 2, n = 4.
By a calculation, we have η2/η1 = sα1+α3+1, which is not holomorphic at
s = 0. Put σ = (13) = [3, 2, 1, 4, 5]. Then, we have

σ • η1

η1
=
(

[32][14]
[34][12]

)α2+1

and

σ • F (−α3, α2 + 1,−α1 − α3; s) = F

(
−α1, α2 + 1,−α1 − α3;

[42][31]
[12][34]

)
.
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Since [12][34] − [13][24] + [23][14] = 0 we have [42][31]
[12][34] = s

s−1 . Similarly, we

have [32][14]
[12][34] = 1− s

s−1 . Therefore, we obtain

F (−α3, α2 + 1,−α1 − α3; s) = (1−s)−α2−1F

(
−α1, α2 + 1,−α1 − α3;

s

s− 1

)
,

which is well-known Kummer’s formula for the Gauss hypergeometric func-
tion.

Example 5. k = 2, n = 5. Put x11 = [32]
[12] , x12 = [42]

[12] , x13 = [52]
[12] , x21 =

[13]
[12] , x22 = [14]

[12] , x23 = [15]
[12] ,

φ1(x(y)) = F1

(
α1 + 1,−α4,−α5, α3 + α1 + 2;

(
x21x12

x11x22

)
,

(
x21x13

x11x23

))
,

φ2(x(y)) = G2

(
−α3,−α5, α3 + α1 + 1, α5 + α2 + 1;

(
−x21x12

x11x22

)
,

(
−x22x13

x12x23

))
,

φ3(x(y)) = F1

(
α2 + 1,−α3,−α4, α5 + α2 + 2;

(
x21x13

x11x23

)
,

(
x22x13

x12x23

))
,

and

η1 = [12]−1x−α1−1
11 xα3+α1+1

21 xα4
22x

α5
23

η2 = [12]−1xα3
11x
−α1−1−α3
12 x−α2−1−α5

22 xα5
23

η3 = [12]−1xα3
11x

α4
12x

α5+α2+1
13 x−α2−1

23 .

Here

F1(a, b, b′, c;x1, x2) :=
∞∑

m,n=0

(a)m+n(b)m(b′)n
(c)m+n(1)m(1)n

xm1 x
n
2

is the Appell hypergeometric function and G2 is the hypergeometric function
G2 in Horn’s list. Then, the functions ηiφi are solutions of Ek,n. Put

s1 =
x21x12

x11x22
=

[42][13]
[32][14]

, s2 =
x22x13

x12x23
=

[52][14]
[42][15]

.

The functions ηi
η1
φi(x(y)) are expressed in terms of s1 and s2 as follows.

F1(s1, s1s2)
s−1

1 s−α1
1 s−α3

1 G2(−s1,−s2)
(s1s2)−1(s1s2)−α1(s1s2)−α3s−α4

2 F1(s1s2, s2)

These functions converge in |s1|, |s2| < 1 and the first function φ1(s1, s1s2)
is holomorphic at s1 = s2 = 0.

The isotropy group G at s1 = s2 = 0 consists of eight elements. The group
G is the dihedral group.
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(σ • s1, σ • s2) σ

( (−s1+1)s2
s2−1 , −s1s2+s1

s1−1 ) [5, 3, 2, 4, 1]
( s2
s2−1 ,

s1s2−s1
s1s2−1 ) [5, 1, 2, 4, 3]

(−s1s2+s1
s1−1 , (−s1+1)s2

s2−1 ) [3, 5, 1, 4, 2]
( s1
s1−1 ,

(s1−1)s2
s1s2−1 ) [3, 2, 1, 4, 5]

( (s1−1)s2
s1s2−1 ,

s1
s1−1 ) [2, 3, 5, 4, 1]

(s2, s1) [2, 1, 5, 4, 3]
( s1s2−s1s1s2−1 ,

s2
s2−1 ) [1, 5, 3, 4, 2]

(s1, s2) [1, 2, 3, 4, 5]

Here, [i1, i2, i3, i4, i5] denotes the permutation
(

1 2 3 4 5
i1 i2 i3 i4 i5

)
∈ S5.

Here is a list of [
σ • η1

η1
,
σ • η2

η1
,
σ • η2

η1
, σ

]
generated by Algorithm 1 in this article. For example, the first line means
that

(σ • η1)/η1 =
−s1s2 + 1
s1s2

(
s2 − 1
s2

)α4
(
−1
s1s2

)α1

(−s1s2 + 1)α5

(
s1s2 − 1
s1s2

)α3

for σ = [5, 3, 2, 4, 1].

[[0,(-s1*s2+1)/(s1*s2)],[4,(s2-1)/(s2)],[1,(-1)/(s1*s2)],[5,-s1*s2+1],

[3,(s1*s2-1)/(s1*s2)]]

[[0,((s1^2-s1)*s2-s1+1)/(s1*s2-s1)],[4,-s1+1],[1,(s1-1)/(s1*s2-s1)],

[5,-s1*s2+1],[3,((-s1^2+s1)*s2+s1-1)/(s1*s2-s1)]]

[[0,-s1*s2+1],[4,-s1+1],[1,-1],[5,-s1*s2+1],[3,s1*s2-1]]

[5,3,2,4,1]

[[0,(1)/(s1*s2)],[4,(s2-1)/(s2)],[3,(s1*s2-1)/(s1*s2)],[1,(-1)/(s1*s2)]]

[[0,(1)/(s1*s2-s1)],[3,(s1*s2-1)/(s1*s2-s1)],[1,(-1)/(s1*s2-s1)]]

[[0,(1)/(s1*s2-1)],[1,(-1)/(s1*s2-1)]]

[5,1,2,4,3]

[[0,s1*s2-1],[1,-1],[4,-s1+1],[3,s1*s2-1],[5,-s1*s2+1]]

[[0,((-s1^2+s1)*s2+s1-1)/(s1*s2-s1)],[1,(s1-1)/(s1*s2-s1)],[4,-s1+1],

[3,((-s1^2+s1)*s2+s1-1)/(s1*s2-s1)],[5,-s1*s2+1]]

[[0,(s1*s2-1)/(s1*s2)],[1,(-1)/(s1*s2)],[4,(s2-1)/(s2)],

[3,(s1*s2-1)/(s1*s2)],[5,-s1*s2+1]]

[3,5,1,4,2]

[[0,-1],[1,-1],[4,-s1+1],[5,-s1*s2+1],[3,-1]]

[[0,(-s1+1)/(s1)],[1,(-s1+1)/(s1)],[4,-s1+1],[5,-s1*s2+1],

[3,(-s1+1)/(s1)]]

[[0,(-s1*s2+1)/(s1*s2)],[1,(-s1*s2+1)/(s1*s2)],[4,(-s1*s2+1)/(s2)],

[5,-s1*s2+1],[3,(-s1*s2+1)/(s1*s2)]]
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[3,2,1,4,5]

[[0,(s1*s2-1)/(s1*s2)],[5,-s1*s2+1],[4,(-s1*s2+1)/(s2)],

[1,(-s1*s2+1)/(s1*s2)],[3,(-s1*s2+1)/(s1*s2)]]

[[0,(s1-1)/(s1)],[5,-s1*s2+1],[4,-s1+1],[1,(-s1+1)/(s1)],

[3,(-s1+1)/(s1)]]

[[5,-s1*s2+1],[4,-s1+1],[1,-1],[3,-1]]

[2,3,5,4,1]

[[0,(-1)/(s1*s2)],[4,(1)/(s2)],[3,(1)/(s1*s2)],[1,(1)/(s1*s2)]]

[[0,(-1)/(s1)],[3,(1)/(s1)],[1,(1)/(s1)]]

[[0,-1]]

[2,1,5,4,3]

[[0,(-1)/(s1*s2-1)],[1,(-1)/(s1*s2-1)]]

[[0,(-1)/(s1*s2-s1)],[3,(s1*s2-1)/(s1*s2-s1)],[1,(-1)/(s1*s2-s1)]]

[[0,(-1)/(s1*s2)],[3,(s1*s2-1)/(s1*s2)],[4,(s2-1)/(s2)],[1,(-1)/(s1*s2)]]

[1,5,3,4,2]

[]

[[0,(1)/(s1)],[3,(1)/(s1)],[1,(1)/(s1)]]

[[0,(1)/(s1*s2)],[3,(1)/(s1*s2)],[4,(1)/(s2)],[1,(1)/(s1*s2)]]

[1,2,3,4,5]

From this table, we obtain one of Kummer type formulas for the Appell
function F1 firstly studied by Vavasseure [2]

(1− s1s2)(1− s1s2)α3(1− s1)α4(1− s1s2)α5

×F1

(
α3 + 1,−α2,−α4, α1 + α3 + 2; s1s2,

s1(1− s2)
s1 − 1

)
= F1 (α1 + 1,−α4,−α5, α3 + α1 + 2; s1, s1s2)

standing for σ = [5, 3, 2, 4, 1] and (σ • η3)/η1.

We have sketched a method to generate Kummer type formulas. However,
it is not the end of the story and the following problems are arising.

1. Improve efficiency. How far can we derive Kummer type formulas of Ek,n
for large k and n? Can we find an interesting structure?

2. We need an efficient method to find a “small” compatible basis.
3. We will obtain a lot of Kummer type identities. However, we have no

method to classify them by a suitable mathematical meaning.
4. Building a system to study and generate formulas of hypergeometric func-

tions by integrating algebra and geometry systems (http://www.openxm.org).
5. How to store generated formulas and proofs in an electronic or digital

formula book on hypergeometric functions[5], [21], [18]?

As to the last problem, OpenMath approaches seem to be promissing. Readers
are invited to articles by A.Cohen, H.Cuypers, E.R.Barreiro, H.Sterk[3], and
A.Solomon[16] in this book on OpenMath activities.
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