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The holonomic gradient method (HGM) consists of 3 steps. In the first step
we derive a system of linear partial differential equations for a definite integral
with parameters by algebraic methods. We need to find an initial condition
for the differential equation in the second step. In the last step, the HGM
suggests to solve the differential equation numerically and numerically evaluate
the integral.

In some applications of the HGM for Fisher-Bingham distribution, Wishart
matrices, Bingham distribution, orthant probabilities, the last step is not dif-
ficult because the integral to evaluate is a dominant solution of the system of
differential equations. The last step requires special care of numerical analysis
for some other applications. These things are not well explained in literatures
as long as I know. The purpose of this expository paper is to figure out some
difficulty of the last step and suppose some methods to make the last step to
work well 1.

We provide an appendix of Risa/Asir programs. These are under defusing demo/

of OpenXM/Math2

1 The Runge-Kutta Method

This is an expository section to explain on the Runge-Kutta method and related
topics such as the adaptive Runge-Kutta method, solving an ordinary differen-
tial equation numerically in the complex domain, the binary splitting method
and other techniques for the matrix factorial.

We consider the linear ordinary differential equation (ODE)

dF

dt
= P (t)F (1)

∗Holonomic Gradient Method
†This is a draft or a private note. Do not circulate it.
1This paper quotes several paragraphs and figures of author’s preprints. Some parts of this

paper are new results, which will be separated to a research paper soon with a title “Methods
to reduce the instability of the holonomic gradient method”.

2http://www.math.kobe-u.ac.jp/OpenXM/Math
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where P (t) is an r × r matrix and F (t) is a column vector valued unknown
function.

The 4th order Runge-Kutta method is given as

ki+1 = P (t0 + ci+1h)(F0 + ai+1kih), k0 = 0 (2)

F1 = F0 + h(b1k1 + b2k2 + b3k3 + b4k4) (3)

Determine the constants so that F1 − F (t0 + h) = O(h5)3 where F (t) is the
solution with the initial condition F (t0) = F0 and a1 = c1 = 0,

b1 = 1/6, b2 = 1/3, b3 = 1/3, b4 = 1/6, c2 = c3 = c4 = 1/2, a2 = a3 = 1/2, a4 = 1.

Define
F1 = F0 + hk1, k1 = P (t0)F0.

Then, we have

F (t)−F1 = F (t0)+F ′(t0)h+O(h2)−F1 = F0+P (t0)F0h+O(h2)−F1 = O(h2)

This simple recursion may be called first order Runge-Kutta method.
Refer to standard text books, e.g.,

hairer
[6] on more details on the Runge-Kutta

method.

1.1 Matrix Factorial

The Runge-Kutta method for linear equation is reduced to a matrix factorial
evaluation. Let us explain what it is. We want to solve

dF

dt
= P̃ (t)F

Let P (t) be the numerator matrix and d(t) the denominator polynomial of P̃ .
Let h be a small number. We put

d0 =
1

d(t)
, d1 =

1

d(t+ h)
, d2 =

1

d(t+ h)

To reduce the computational cost of the matrix for Runge-Kutta method, we
firstly express the denominator polynomials by the symbols di and utilize com-
puter algebra systems.

We denote by Q(t, h) the matrix for the 4th order Runge-Kutta method. It
is expressed as

--> load("ak2.rr");

--> QQ=rk_mat2(newmat(2,2,[[0,1],[t,0]]))$

--> base_replace(QQ[0],QQ[1]);

[ 1/24*h^4*t^2+(1/48*h^5+1/2*h^2)*t+1/6*h^3+1 1/6*h^3*t+1/12*h^4+h ]

[ 1/6*h^3*t^2+(1/6*h^4+h)*t+1/24*h^5+1/2*h^2 1/24*h^4*t^2+(1/16*h^5+1/2*h^2)*t+1/48*h^6+1/3*h^3+1 ]

3vector = O(hm) means that |vector| = O(hm).
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Figure 1:
tgkt
[8] 5 × 5 contingency table, a benchmark test of evaluating the nor-

malizing constant (A-hypergeometric polynomial) with 32 processes from
tgkt
[8]

. N is a parameter in the marginal sum.fig:graph-time2-crt-5-32

The last output is the matrix Q(t, h).
The function value F (t0 + kh) is approximated as

Q(t0 + (k − 1)h, h) · · ·Q(t0 + 2h, h)Q(t0 + h, h)Q(t0, h)F0 (4)

We call the product
∏k−1

i=0 Q(to + ih, h) the matrix factorial of Q(t, h).

Let A be a d× n matrix with non-negative integral entries. For β ∈ Nd
0, we

put

Z(β; p) =
∑

Au=β,u∈Nn
0

pu

u!
(5)

Fix β. For u ∈ Nn
0 satisfying Au = β, the probability pu/u!

Z(β;p) is the condi-

tional probability of the multinomial distribution. The polynomial is called
A-hypergeometric polynomial and satisfies the A-hypergeometric system and
contiguity relations (matrices of recurrence relations with respect to β). A fast
and exact numerical evaluation of matrix factorials is used in

tgkt
[8] to solve the

MLE problem of the distribution above theoretically studied in
TKT
[9] by evaluating

matrix factorial of contiguity relation. We suggest the binary splitting method
and the modular methods and discuss on advantages of these methods.

The following is a description of the binary splitting of
tgkt
[8].

It is well-known that the binary splitting method for the evalua-
tion of the factorial m! of a natural number m is faster method
than a naive evaluation of the factorial by m! = m × (m − 1)!.
The binary splitting method evaluates m(m−1) · · · (⌊m/2⌋+1) and
⌊m/2⌋(⌊m/2⌋ − 1) · · · 1 and obtains m!. This procedure can be re-
cursively executed. This binary splitting can be easily generalized
to our generalized matrix factorial; we may evaluate, for example,
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M(a)M(a+ 1) · · ·M(⌊a/2⌋ − 1) and M(⌊a/2⌋) · · ·M(−2) to obtain
M(a)M(a+1) · · ·M(−2), a < −2. This procedure can be recursively
applied. However, what we want to evaluate is the application of the
matrix to the vector F (−1). The matrix multiplication is slower than
the linear transformation. Then, we cannot expect that this method
is efficient for our problem when the size of the matrix is not small
and the length of multiplication is not very long. However, there are
cases that the binary splitting method is faster. Here is an output
by our package gtt ekn3.rr.

[1828] import("gtt_ekn3.rr")$

[4014] cputime(1)$

0sec(1.001e-05sec)

[4015] gtt_ekn3.expectation(Marginal=[[1950,2550,5295],[1350,1785,6660]],

P=[[17/100,1,10],[7/50,1,33/10],[1,1,1]]|bs=1)$ //binary splitting

3.192sec(3.19sec)

[4016] gtt_ekn3.expectation(Marginal,P)$

4.156sec(4.157sec)

The manual page of gtt ekn is
http://www.math.kobe-u.ac.jp/OpenXM/Current/doc/asir-contrib/ja/gtt_

ekn-html/gtt_ekn-ja.html

Todo, complexity in p-adic.

1.2 Adaptive Runge-Kutta method

Let F1 be the vector determined by the Runge-Kutta method (of the 4th order)
of the step size 2h (not h). Let F2 be the vector determined by the Runge-Kutta
method two times with the step size h.

We have
|F (t0 + 2h)− F1| = ϕ(2h)5 +O(h6) (6) eq:2h

where ϕ depends only on the solution F and t0, because F1 is chosen so that
the Taylor expansion of F (t) at t = t0 is eliminted by F1 up to h4. We assume
the ODE is of rank 1 in the sequel and then we will omit | | of order estimate.
The case of a higher rank ODE can be studied analogously. We also have

|F (t0 + 2h)− F2| = ϕh5 + ϕ′h5 +O(h6) (7) eq:h2

where ϕ depends only on the solution F and t0. and ϕ′ depends only on the
solution F and t0 + h.

Proof . Let Q(t, h) be the Runge-Kutta matrix. F2 = Q(t0+h, h)Q(t0, h)F0.
Then, we have

F (t0 + 2h)−Q(t0 + h, h)Q(t0, h)F0

= F (t0 + 2h)−Q(t0 + h, h)Q(t0, h)F0

= F (t0 + 2h)−Q(t0 + h, h)F (t0 + h) +Q(t0 + h, h)F (t0 + h)−Q(t0 + h, h)Q(t0, h)F0

∼ (ϕ′h5 +O(h6)) + (Q(t0, h)(ϕh
5 +O(h6)))

Since Q(t0, h) = E +O(h), we have the conclusion. //
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Assume ϕ = ϕ′. Taking the difference of (
eq:h2
7) and (

eq:2h
6), we have

F2 − F1 = 30ϕh5 +O(h6) (8)

The good point of this identity is that we can estimate ϕ without knowing the
true solution F (t) and estimate the coeficient of the error. We put ∆(h) =
30ϕh5. Let us assume

∆ = εh5|F0| (9)

Then, ϕ = |F0|ε/30. Then the relative error |(F (t + h0) − F1)/F0| is bounded
by

|ϕ|h5

|F0|
+O(h6) =

ε

30
+O(h6) (10)

When we want to make the relative error smaller than ε
30 , we need to make

∆(h) (difference of 2h step and two times of h step) smaller than εh5|F0|.
In order to choose the next h, use the following relation

h0

h1
=

(
∆0

∆1

)1/5

The adaptive Runge-Kutta method is implemented in most of the libraries
of numerical solvers. A sample program for GSL4 is a26-y.c for Hk

n(x, y) (see
Example

ex:Hkn
6 on this function and its applications).

1.3 Solving ODE numerically in the complex domain

Let
d

dz
F = P (z)F

be a differential equation in the complex domain where P (z) is an r× r matrix
and F is a column vector valued function of length r. We want to solve the
differential equation along the path

z = z0 + (z1 − z0)t, 0 ≤ t ≤ 1, z0, z1 ∈ C

with the initial value F (z0) = F0. Since d/dz = (z1− z0)
−1d/dt, the differential

equation is transformed into

dF

dt
= (z1 − z0)P (z0 + (z1 − z0)t)F (11) eq:ODEin_t

We decompose (z1 − z0)P (z0 + (z1 − z0)t) into the real part and the imaginary
part as P1(t)+

√
−1P2(t) where we assume t is a real number. Put F = u+

√
−1v

where u, v are column vector valued functions of length r. Since

du

dt
+
√
−1

dv

dt
= P1u− P2v +

√
−1(P1v + P2u),

4https://www.gnu.org/software/gsl/
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we obtain the rank 2r ODE of real valued unknown functions on R

d

dt

(
u
v

)
=

(
P1 −P2

P2 P1

)(
u
v

)
(12) eq:ODEonR

We can now use numerical solvers of ODE.
c2rsys( (

eq:ODEin_t
11) ) (complex to real system) in ak2.rr generates the coefficient matrix of (

eq:ODEonR
12).

It utilizes the functions rat real part and rat imaginary part.
Example:

--> load("ak2.rr")$

--> c2rsys(base_replace((1-@i)*newmat(2,2,[[0,1],[1/z,0]]),[[z,(@i+(1-@i)*t)]]));

[ 0 1 0 1 ]

[ (2*t-1)/(2*t^2-2*t+1) 0 (1)/(2*t^2-2*t+1) 0 ]

[ 0 -1 0 1 ]

[ (-1)/(2*t^2-2*t+1) 0 (2*t-1)/(2*t^2-2*t+1) 0 ]

2 A heuristic method: correction of Initial Value
Vector by Eigen Vectors

We have explained some well-known things of the Runge-Kutta method. We
will propose a heuristic method to avoid a blow-up of a solution under some
situations. This method might be well-known especially in hard efforts of solving
stiff ODE’s, but I do not find a relevant literature.

We want to find a numerical solution of the initial value problem of the
ordinary differential equation

dF

dt
= P (t)F (13) eq:ode1

F (t0) = F true
0 ∈ Rn (14) eq:init1

where P (t) is an r × r matrix, F (t) is a column vector function of size r, and
F true
0 is the initial value of F at t = t0.
Solving this problem is the final step of the holonomic gradient method

(HGM)
hgm
[4]. We often encounter the following situation in the final step.

situation123 Situation 1 1. The initial value has at most 3 digits of accuracy. We denote
this initial value F0.

2. The property |F | → 0 when t → +∞ is known, e.g., from a background
of the statistics.

3. There exists a solution F̃ of (
eq:ode1
13) such that |F̃ | → +∞ or non-zero finite

value when t → +∞.

Under this situation, the HGM works only for a very short interval of t because
the error of the initial value vector makes the fake solution F̃ dominant and
it hides the true solution F (t). We call this bad behavior of the HGM the
instability of the HGM .
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Example 1

d

dt
F =

 −1 1 0
0 −1 1
0 0 0

F

The solution space is spanned by F 1 = (exp(−t), 0, 0)T , F 2 = (0, exp(−t), 0)T ,
F 3 = (1, 1, 1)T . The initial value (1, 0, 0)T at t = 0 yields the solution F1. Add
some errors (1, 10−30, 10−30)T to the initial value. Then, we have
t value F1 by RK difference F1 − F 1

1

50 1.92827e-22 9.99959e-31
60 8.75556e-27 1.00000e-30

70 1.39737e-30 1.00000e-30

80 1.00002e-30 1.00000e-30

We can see the instability.

ex:airy1 Example 2

P (t) =

(
0 1
t 0

)
.

This differential equation is obtained from the Airy differential equation

y′′(t)− ty(t) = 0

by putting F = (y(t), y′(t))T . It is well-known that the Airy function

Ai(t) =
1

π
lim

b→+∞

∫ b

0

cos

(
s3

3
+ ts

)
ds

is a solution of the Airy differential equation and

Ai(0) =
1

32/3Γ(2/3)
= 0.355028053887817 · · ·

Ai′(0) =
1

31/3Γ(1/3)
= −0.258819403792807 · · ·

lim
t→+∞

Ai(t) = 0

lim
t→+∞

Ai′(t) = 0

Figure
fig:airy
2 is a graph of Airy Ai function and Airy Bi function. The function

F (t) = (Ai(t),Ai′(t))T satisfies the condition 2 of the Situation
situation123
1 of the insta-

bility problem.
We can also see that the condition 3 of the Situation

situation123
1 holds by applying

the theory of singularity of ordinary differential equations (see, e.g., the manual
DEtools/formal sol of Maple and its references on the theory, which has a
long history). In fact, the general solution of the Airy differential equation is
expressed as

C1t
−1/4 exp

(
−2

3
t3/2

)
(1 +O(t−3/2))

+ C2t
−1/4 exp

(
2

3
t3/2

)
(1 +O(t−3/2))
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Figure 2: Airy Ai(x) and Bi(x) drawn by Mathematica fig:airy

when t → +∞ where Ci’s are arbitrary constants.
We note that the high precision evaluation of the Airy function is stud-

ied by several methods (see, e.g.,
CM2013
[1] and its references). Some mathematical

software systems have evaluation functions of the Airy function. For example,
N[AiryAi[10]] gives the value of Ai(10) on Mathematica. By utilizing these
advanced evaluation methods, we use the Airy differential equation for our test
case to check the validity of our heuristic algorithm.

We are going to propose some heuristic methods to avoid the instability
problem of the HGM. Numerical schemes such as the Runge-Kutta method
obtain a numerical solution by the recurrence

Fk+1 = Q(k, h)Fk (15)

from F0 where Q(k, h)5 is an r × r matrix determined by a numerical scheme
and h is a small number The vector Fk is an approximate value of F (t) at
t = tk = t0 + hk.

Example 3 The Euler method assumes dF/dt(t) is approximated by (F (t +
h)− F (t))/h and the scheme of this method is

Fk+1 = (E + hP (tk))Fk

where E is the r × r identity matrix.

In case that the initial value vector F0 contains an error, the error may
generate a blow-up solution F̃ under the Situation

situation123
1 and we cannot obtain the

true solution.
Let N be a suitable natural number and put

Q = Q(N − 1, h)Q(N − 2, h) · · ·Q(1, h)Q(0, h) (16) eq:bmatrix

5It was denoted by Q(t0 + kh, h) in the previous section. We denote Q(t0 + kh, h) by
Q(k, h) as long as no confusion arises.
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We assume the eigenvalues of Q are positive real and distinct to simplify our
presentation. The following heuristic algorithm avoids to get the blow-up solu-
tion.

alg:simple Algorithm 1 1. Obtain eigenvalues λ1 > λ2 > · · · > λr > 0 of Q and the
corresponding eigenvectors v1, . . . , vr.

2. Let λm be the eigenvalue which is almost equal to 0.

3. Express the initial value vector F0 containing errors in terms of vi’s as

F0 = f1v1 + · · ·+ frvr, fi ∈ R (17) eq:F0_by_vi

4. Choose a constant c such that F ′
0 := c(fmvm + · · · + frvr) approximates

F0.

5. Determine FN by FN = QF ′
0 with the new initial value vector F ′

0.

We call this algorithm the defusing method . This is a heuristic algorithm and we
cannot claim that F ′

0 gives a better approximation of the initial value vector than
F0 for now, but we can avoid the blow-up of the numerical solution with this
method. However, it works well for the Airy differential equation as follows. We
will see that this method also works well for the function Hk

n(1, y) in Example
ex:Hkn
6.

The function fit init in ev ak2.rr performs the steps 3 and 4 of the Al-
gorithm

alg:simple
1

--> Mat=newmat(2,2,[[0,1],[2,0]])$

--> EE=gsl.eigen_nonsymmv(Mat)$

// EE[0] is the set of the eigenvalues and EE[1] is the set

// of the corresponding eigenvectors

--> D=fit_init([1,3],[[1,0],[1,1]]);

--> D;

[[ 1 3 ],[[c_1,3],[c_0,-2]],[[ 1 0 ],[ 1 1 ]]]

// since [1,0],[1,1] spans the whole space, the answer agrees with the input [1,3].

--> base_replace(c_0*D[2][0]+c_1*D[2][1], Rule=D[1]);

[ 1 3 ]

--> fit_init(newvect(2,[1,2]),[[1.1,2.1+@i]]);

...

[[ 1 0.909090909090909*ii+1.90909090909091 ],[[c_0,10/11]],[[ 11/10 ii+21/10 ]]] // ii = @i

Example 4 We set t0 = 0, h = 10−3, N = 10 × 103 and use the 4-th order
Runge-Kutta scheme. We have λ1 = 9.708×109, v1 = (−5.097,−159.919)T and
λ2 = 3.247×10−7, v2 = (−5.09798, 37.164813649680576037539971418209465086)T =
(a, b) Then, m = 2. We assume the 3 digits accuracy of the value Ai(0) as 0.355
and set F ′

0 = (0.355, 0.355b/a). Then, the obtained value F5000 at t = 5 is
(0.000108088745179140,−0.000246853220440734). We have the following accu-
rate value by Mathematica

9



In[1]:= N[AiryAi[5]]

Out[1]= 0.000108344

In[2]:= N[D[AiryAi[x],{x}] /. {x->5}]

Out[2]= -0.000247414

Note that 3 digits accuracy has been kept for the value Ai(5). On the other
hand, we appy the 4th order Runge-Kutta method with h = 10−3 for F0 =
(0.355,−0.259)T , which has the accuracy of 3 digits. It gives the value at t = 5
as (−0.147395,−0.322215), which is a completely wrong value, and the value at
t = 10 as (−102173,−320491), which is a blow-up solution.

This heuristic algorithm avoids the blow-up of the numerical solution. More-
over, when the numerical scheme gives a good approximate solution for the exact
initial value, we can give an error estimate of the solution by our algorithm. Let
| · | be the Eucledian norm.

lem:error1 Lemma 1 Let F (t) be the solution. When |QF true
0 − F (Nh)| < δ holds, we

have
|QF ′

0 − F (Nh)| < |QF ′
0|+ |F (Nh)|+ 2δ (18)

for any F ′
0 ∈ Rn.

Proof . It is a consequence of the triangular inequality. In fact, we have

|QF ′
0 − F (Nh)|

= |QF ′
0 −QF true

0 +QF true
0 − F (Nh)|

≤ |QF ′
0 −QF true

0 |+ |QF true
0 − F (Nh)|

≤ |QF ′
0|+ |QF true

0 |+ δ

≤ |QF ′
0|+ |F (Nh)|+ 2δ

//

Under the Situation
situation123
1, |F (Nh)| is small enough. Then, it follows from

the Lemma that |QF ′
0| should be small. In this context, our algorithm is not

heuristic and we can give an error estimate of our algorithm. However, our
numerical experiments present that the algorithm shows a better behavior than
this theoretical error estimate. Then, we would like to classify our defusing
method as a heuristic method.

3 Variations of the Defusing Method

We have illustrated our heuristic algorithm in the simplest form in the Algorithm
alg:simple
1. We will present some variations of the algorithm.

The first variation: We appy the algorithm to obtain the local solutions near
a singularity before applying our heuristic defusing method.

10



Let us explain this method by the example of the Airy differential equation.
We put t = x2. Then the differential equation transformed into

xf ′′−f ′−4xf = 0, f(x) = y(x2) (y(t) is a solution of the Airy differential equation).

We denote x by t in the sequel. The asymptotic series solutions of this differ-
ential equation at the infinity can be obtain by algorithmic was as

# Maple

--> with(DEtools);

--> formal_sol(t*Dt^2-Dt-4*t,[Dt,t],t=infinity);

and they are spanned by

t−1/2 exp

(
−2

3
t3
)
(1 +O(t−3)), t−1/2 exp

(
2

3
t3
)
(1 +O(t−3))

We replace the unknown function f(t) by g(t) exp(−(2/3)t3). Then, the function
g(t) satisfies

tg′′ − (4t3 + 1)g′ − 2t2g = 0 (19) eq:modified_airy

We have g(t) = f(t) exp((2/3)t3) = y(t2) exp((2/3)t3).

Example 5 We set t0 = 1, h = 10−3, N = 1.5 × 103 and use the 4-th order
Runge-Kutta scheme. We have λ1 = 1.1290×1010, v1 = (−0.040271,−0.99918)
and λ2 = 0.66834, v2 = (−0.94307, 0.33257). Then, we choose m = 2. We give
3 digit accurate value for Ai(1) ∼ 0.135.

t2 Ai(t2) by our Algorithm Exact value
1 0.135 0.135292
4 0.000951564 0.00094928

4.9997 0.00010816 0.000108419
5.9976 0.0000100073 0.0000099654

There is a loss of accuracy, but we have no blowup.

--> load("2gauge.rr")$

--> rk_mairy(2000); // mairy means "m"odified "airy"

In the Lemma
lem:error1
1, the error is bounded by |QF ′

0| where F ′
0 is a given initial

value. Let us see the shape of {v ∈ R2 | |Qv|2 = c} where c > 0 is a constant.
Since |Qv|2 = vTQTQv, this is a quadratic form with respect to v and the
eigenvalues of QTQ determines the shape of this. The eigenvalues and eigen-
vectors are λ1 = 1.3956 × 1018, v1 = (−0.33257,−0.94307) and λ2 = 0.40798
v2 = (−0.94307, 0.33257). Then, it is the ellipsoid of almost crushed shape.
When F ′

0 belongs to the eigenspace of λ2, |QF ′
0|2 = λ2|F ′

0|2 and this choice
makes the error minimum. In our example, |F ′

0|2λ2 is equal to 0.031715.

11



We have shown that the defusing method works for the Airy function. Does it
work for HGM problems? We apply the defusing method (removing components
belonging to some eigenspaces, a heuristic method) to the evaluation of

Hk
n(x, y) =

∫ x

0

tke−t
0F1(;n; yt)dt.

by solving differential equation with respect to y. The equation is unstable as
shown in

non-central
[5]. The slides6 contain numerical experiments and some analysis on

this unstability. Although the accuracy is not very high, but it seems to work
well as long as we do not need a very high accuracy results.

Kang-Alouini show that the outage probability of a communication system
can be expressed by this function Hk

n.

Theorem 1
KA
[2] When the matrix Σ−1MM∗7 has the positive eigenvalues 0 <

y1 < y2 < · · · < ys, then the cummulative distribution function of the largest
eigenvalue ϕs of S for the threshold x is

P (ϕs ≤ x) =
exp(−

∑s
i=1 λi)

Γ(t− s+ 1)s
∏

1≤i<j≤s(λj − λi)
detΨ(x)

where Ψ(x) is a matrix valued function of which (i, j) element is

Ht−i
t−s+1(x, λj) =

∫ x

0

yt−i exp(−y) 0F1( ; t− s+ 1; yλj) dy

Proposition 1 (
non-central
[5]) The function u = Hk

n(x, y) satisfies

{θy(θy + n− 1) + y(θx − θy − k − 1)} • u = 0,

(θx − θy − k − 1 + x) θx • u = 0.

where θx = x ∂
∂x ,θy = y ∂

∂y . The holonomic rank of this system is 4.

When y → +∞, solutions of the system has the following asymptotic be-
havior. It is shown by the DEtools[formal sol] function of Maple.

h1 = (xy)−1/2(1/2+n) exp(−2(xy)1/2)(1 +O(1/y1/2)),

h2 = y−k−1(1 +O(1/y)),

h3 = (xy)−1/2(1/2+n) exp(2(xy)1/2)(1 +O(1/y1/2)),

h4 = y1−n+k exp(y)(1 +O(1/y)),

What is the asymptotic behavior of the function Hk
n(x, y) where x is fixed.

We compare the value of h4 and the value by a numerical integration in Math-
ematica8.

6http://www.math.kobe-u.ac.jp/HOME/taka/2017/ohp-20171109-shinshu.pdf
7channel matrix H is NT × Nr complex valued random matrix. The column vector X

satisfies E[X] = M and the convariance is Σ−1. S = Σ−1HH∗.
8The method to evaluate hypergeometric functions in Mathematica is still a black box.

It is not easy to give a numerical evaluator of hypergeometric functions which matches to
Mathematica in all ranges of parameters and independent variables.
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y Ratio
1000 7.36595030875893e-452
2000 2.64621603289928e-881
3000 2.67723893601667e-1311

where Ratio = (H10
1 (1/2, y))/(y1−n+k exp(y)).

This computational experiments suggest thatHk
n is expressed by h1, h2, h3 with-

out the dominant component h4.

ex:Hkn Example 6 We apply the defusing method to H10
1 (1, y) with h = 10−3 and

setprec(30) as

--> load("test3-ak2.rr");

--> setprec(30);

--> Ans=hkn_y_multi_defused( | to=1001, strategy=3)$ // long

--> Ans[0][0];

[1000.8849999999999999999998444,

[ 1591893178519085510587.3578603 10759414054929503303.233084211 -93355693549146070561.700159933 -97194717520494769123.600709482 ]]

--> Ans[0][1];

[999.88399999999999999999984454,

[ 1547198856939613400633.6203503 10462858139591482973.498407182 -90774017565658103232.026934747 -94509067405993825995.496968597 ]]

The exact values compared are evaluated by the numerical integrator of
Mathematica as

--> hh[k_,n_,x_,y_]:=NIntegrate[t^k*Exp[-t]*HypergeometricPFQ[{},{n},t*y],{t,0,x}];

--> hh[10,1,1,1000]

The Figure
fig:gsl-RK
3 shows that the adaptive Runge-Kutta method fails before y

becomes 30. The Figure
fig:relative
4 presents the relative error of values by the defusing

method and exact values. It shows that the defusing method works even when
y = 103.

In
non-central
[5], the cases of NT = 5, NR = 7, y = [0.4, 6] × 108, 103? ≤ x ≤ 2 × 108.

are studied. The differential equation with respect to x, which is obtained by
a block diagonalization of the system of rank 4, is used. The initial value is
evaluated by the numerical integration around small x = 1000 and the large y
near 108. We have tried our defusing method only upto y = 103, because we
have not yet made an efficient implementation of the method.

4 A method to obtain a stabile system

We gave a notion of a stabile linear ODE and it is announced in
non-central
[5] that any

linear ODE can be transformed into a stabile system for a target function in an
algorithmic way.

Let us review the definition of a stabile ODE for a target function f(x)
following

non-central
[5].

Consider a holonomic function f(x) that satisfies a LODE of order m and
denote with f1(x), . . . , fm(x) its linearly independent solutions. Then, let fi(x)
be the dominant solution for x → ∞, i.e., |fi(x)| ≥ |fj(x)|, ∀j. We refer to

the LODE as stabile for f(x) if limx→∞
|fi(x)|
|f(x)| < ∞. (Note that a LODE is

13
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Figure 3: logH10
1 (1, y). Exact value (by numerical integration) and the value by

our defusing method agree. The adaptive Runge-Kutta method with the initial
relative error 10−20 (upper curve) does not agree with the exact value when y
is larger than about 25. fig:gsl-RK

stabile or not regardless of the selected set of linearly independent solutions.)
The notion of stabile LODE is defined analogously in the case of a vector-valued
function, by replacing | · | with a vector norm || · ||.

Theorem 2
non-central
[5] From a given LODE system that is not stabile, a lower-dimensionaltheorem_stabile_LODE_from_gauge

stabile LODE system can be derived algorithmically by gauge transformations.

This theorem only gives a general scheme and we need some ideas specialized
to each problems to give an implementation which works well.

We explain this method and ideas in case of the Airy differential equation

y′′ − xy = 0. Put F = (y, xy′)T . Then, we have x d
dxF =

(
0 1
x3 1

)
F .

Changing the independent variable x to t with the relation x = t2, we obtain
the system

t
d

dt
F = 2

(
0 1
t6 1

)
F. (20) eq:20191105a

When F stands for the Airy function Ai(t2), the first component of F has the
asymptotic behavir y(t) = t−1/2 exp(−(2/3)t3) · O(1). Devide the both hand
sides of (

eq:20191105a
20) by t. We want to transform the differential equation

dF

dt
=

(
0 2/t
2t5 2/5

)
F (21) eq:0930a

into a upper triangular form such that we can obtain the numerical value of the
Airy function Ai(t2) without the instability caused by the solution Bi(t2) which

14
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Figure 4: The relative error of H10
1 (1, y) of our defusing method. The relative

error is defined as (Hd −H)/H where Hd is the value by the defusing method
and H is the exact value. fig:relative

grows rapidly as t−1/2 exp((2/3)t3) ·O(1). Note that possible asymptotic behav-
iors can be obtained by an algorithmic method based on the singularity theory
of ODE (see, e.g., Hukuhara-Turrittin reduction, ..., DEtools:formal sol or
ISOLDE in Maple).

We put

F =

(
g1
g2

)
=

(
g̃1t

−1/2 exp((2/3)t3

g̃2t
5/2 exp((2/3)t3)

)
(22)

The exponential part is chosen to be the solution (g1, g2)
T is the dominant solu-

tion. The exponential part is obtained by the algorithmic method of obtaining
the possible asymptotic behaviors. The function (g̃1, g̃2)

T satisfies the following
differential equation (try the function s airy()[1] in our expository program
3stabile.rr).

d

dt

(
g̃1
g̃2

)
=

(
−2t2 + 1

2t 2t2

2t2 −2t2 − 1
2t

)(
g̃1
g̃2

)
(23)

--> load("3satible.rr");

--> gen_g1g2(3000); // generate a table of tilde g1, g2

// with the initial condition of Airy Bi

--> Table_g1g2_tilde[0];

[1,[ 0.619912 0.478729 ]] //value of tilde g1, g2 at t=1

--> Table_g1g2_tilde[3000];

[4,[ 0.56512 0.56289 ]] //value of tilde g1, g2 at t=1

Following the algorithm in
non-central
[5], we apply the Gauge transformation

F =

(
g1 0
g2 1

)

15



and obtain the differential equation for H

dH

dt
=

(
0 2g̃−1

1 t−1/2 exp(−(2/3)t3)
0 −g̃2g̃

−1
1 2t2 + 2

t

)
H (24) eq:0930b

Try s airy()[0] in 3stabile.rr to get this equation. Put H = (h1, h2)
T .

Then, F = (g1h1, g2h1 + h2).
We solve the subsystem of (

eq:0930b
24)

d

dt
h2 =

(
−2g̃2

g̃1
t2 +

2

t

)
h2 (25)

We expect that h2 = exp(−(2/3)t3)O(1) when t → +∞. The ODE (
eq:0930b
24) is

stabile for this solution and we will show that this solution gives the second
dominant solution of the original system. In this sense, we claim that a stabile
system can be obtained in an algorithmic way in

non-central
[5]. It follows from the Gauge

transformation that we have F = (g1h1, g2h1 + h2)
T .

In order to obain the second dominant solution from h2, we will decompose
F as

F =

(
g1
g2

)
h1(∞) +

(
−g1h̄1(t)

−g2h̄1(t) + h2

)
(26)

where the first part of the sum is the first dominant solution and the second
part of the sum is the second dominant solution. This decomposition is the key
idea to make a practical numerical evaluation. Let us explain what are h̄1 and
h1(∞).

The function h1 is determined from (
eq:0930b
24) by

dh1

dt
= h3(t) exp(−4t3/3), h3(t) =

2t−1/2h̃2(t)

g̃1
, h̃2(t) = h2(t) exp(2t

3/3)

// contined from the above input

--> gen_h2()$

--> Table_h2_tilde[0];

[1,-0.513474647706052] // value of tilde h2

Fix a point t = t0. Put

h̄1(s) =

∫ ∞

s

h3(t) exp(−4t3/3)dt. (27) eq:0930c

Then, h1(s) = h̄1(t0) − h̄1(s) is a solution of the differential equation. The
numerical integration of the function h̄1(s) can be done as follows.

h̄1(s) exp(4s
3/3)

=

∫ ∞

s

h3(t) exp

(
−4

3
(t3 − s3)

)
dt (28)

The argument of exp is always negative, and then the numerical integration is
easy to perform.

16



--> check3(1000); // it returns an approximate value of Airy Ai,

// which is the second dominant solution.

... snip ...

Ai[3.98801]=0.000973637, Ai[3.992]=0.000965645,

Ai[3.996]=0.000957712, Ai[4]=0.000949835,

We give a rough estimate of the growth order of g1h̄1 and g2h̄1. They are
bounded by O(exp(−2t3/3))

A sketch of a formal proof . A formal paritial integration yields

h̄1(s) =

∫ ∞

s

h3(t)
1

−4t2
(
exp(−4t3/3)

)′
dt

=

[
h3(t)

1

−4t2
(
exp(−4t3/3)

)]∞
s

−
∫ ∞

s

(
h3(t)

1

−4t2

)′

exp(−4t3/3)dt

= −h3(s)
1

−4s2
(
exp(−4s3/3)

)
+ (the integral above)

Repeating this partial integration, we obtain the estimate h̄1(s) = O(exp(−4t3/3)).
Since g1(s) = O(exp(2t3/3)), we have an estimate for g1h̄1. g2h̄ = 1 can be es-
timated analogously.

5 Other tips and tricks for HGM

5.1 Using HGM for a subprocedure of a numerical inte-
gration

In
koyama2019
[7], a generalization of χ2 distribution is studied motivated by the work of

Marumo, Oaku, Takemura
MOT2014
[3]. He obtains the following integral formua, which

can be numerically evaluated by HGM. He defined the following function φ3.

φ3(s) =

∫ ∞

0

exp(−str) exp

(
−e2π

√
−1/r

2
t2

)
dt (29) eq:phi3

for s > 0. We will also call this function Akm(r; s) (modified Ak). The real
part and the imaginary part of φ3 are

Reφ3(s) =

∫ ∞

0

exp(−str − (cos(2π/r))t2/2) cos(sin(2π/r)t2/2)dt (30) eq:phi3_re

Imφ3(s) = −
∫ ∞

0

exp(−str − (cos(2π/r))t2/2) sin(sin(2π/r)t2/2)dt(31) eq:ph3_im

phi3(R,S | diff=K); in ak2.rr returns the real part of φK
3 (S), r = R. phi3(R,S | im=1,

diff=K); returns the imaginary part of φK
3 (S), r = R. They are evaluated by the DE

numerical integration formula.

Theorem 3 (
koyama2019
[7]) The probability density function f(x) = d

dxP (
∑n

k=1 X
r
k < x)

(Xk’s are i.i.d random normal variables, r ≥ 3) is expressed by the following

17



integrals.

f(x) =
1

π

1

2πn/2

∫ ∞

0

exp(−xs) Im
[
φ3(s) exp(

√
−1π/r) + φ0(s)

]n
ds, (r is odd)(32) eq:f_odd

f(x) =
1

π

(
2

π

)n/2 ∫ ∞

0

exp(−xs) Im
[
φ3(s) exp(

√
−1π/r)

]n
ds, (r is even) (33) eq:f_even

(34)

where

φ0(s) =

∫ ∞

0

exp(−str − t2/2)dt (35) eq:phi0

These are derived from a Levy type formula of the characteristic function
with changes of the path of integration in the complex domain. We evalute the
function φ3 by the HGM by a differential equation shown later. It seems that
it is not good method to evaluate f(x) itself by the HGM, because the rank
of the holonomic system for the integrand becomes very high when n increases
MOT2014
[3]. and it will be a good method to generate a table of φ3 by the HGM and
use a one dimensional numerical integration method to obtain the value of the
PDF f(x). Note that the HGM is a good method to generate a table of values.

Trick: use HGM as a subprocedure of a numerical integration.

hgm_f_r4(N=2,X=1); // From=1, To=2. H=0.001, N=2, X=1

0.0969109812000352 // Fast

psi3_im(R=4,N=2,X=1 | from=1, to=2); // double integral

0.0968470258202232 // Slow

load("test-ak2.rr");

[2795] Ans=hgm_phi3(R=6,X=100)$ // evaluate by hgm. every 0.1 H=0.001

...

Time=[ 41.2335 0 2313312788 41.2705 ]

[2796] Ans[0];

[100,[ (0.422986949995807-0.0123543330871498*@i) (-0.000678813968444877+6.03046590444843e-05*@i) (7.78402323664449e-06-8.92422761251439e-07*@i) ]]

The figure
fig:pdf-Xr
5 is a set of graphs of f(x).

Let F (y) be the cummulative distribution function (CDF). In other words,

F (y) =

∫ y

0

f(x)dx

When we need to specify the r (power) and n (freedom), we denote them by
Fn(r; y) and fn(r; y) respectively.

As an application of the result by T.Koyama
koyama2019
[7] we have the following for-

mula.

Proposition 2 The cummulative distribution function (CDF) is approximately
expressed as

F (y) = P (

n∑
i=1

Xr
i < y)

∼
∫ b

0

1− exp(−ys)

s
ξ(s)ds+ cα

b−α

α
− cαy

α

∫ ∞

by

e−tt−α−1dt (36)
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Figure 5: PDF f(x) for r = 4, n = 1, 3, 5 fig:pdf-Xr

where b is a sufficiently large number, α = n/r, and ξ(s) is given in (
eq:xi_odd
37) and

(
eq:xi_even
38).

Proof . We will give a method to evalute F (y) with the HGM. We introduce
the function ξ(s) to save the space

ξ(s) =
1

π

1

(2π)n/2
Im [φ3(s) exp(

√
−1π/r) + φ0(s)]

n r is odd (37) eq:xi_odd

ξ(s) =
1

π

(
2

π

)n/2

Im [φ3(s) exp(
√
−1π/r)]n r is even (38) eq:xi_even

We firstly split the integral into two parts.

F (y) =

∫ y

0

dx

∫ ∞

0

ds exp(−xs)ξ(s)

=

∫ ∞

0

dsξ(s)

∫ y

0

dx exp(−xs)

=

∫ ∞

0

1− exp(−ys)

s
ξ(s)ds

Let b > 0 be a number. Put

I1 = =

∫ b

0

1− exp(−ys)

s
ξ(s)ds (39) eq:cdf_b

I2 = =

∫ ∞

b

1− exp(−ys)

s
ξ(s)ds (40) eq:cdf_tail

(41)
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Then, F (y) = I1 + I2. When s is large φ3(s) is approximated by crs
−1/r for

a constant cr by numerical experiments and the expression of local solutions of
the ODE for φ3. Let r be an even number. Put α = n/r and

cα =
1

π

(
2

π

)n/2

Im (cnr exp(
√
−1nπ/r))

We approximate I2 when y > 0 in (
eq:cdf_tail
40) as follows.

I2 ∼ cα

∫ ∞

b

1− exp(−ys)

s
s−αds

= cα

∫ ∞

b

s−α−1 − cα

∫ ∞

b

exp(−ys)s−α−1ds

= cαb
−α/α− cαy

α

∫ ∞

by

e−tt−α−1dt

The last integral is the incomplete gamma function. When y = 0, we put I2 = 0.
//

Here is a method to obtain the CDF. (We have tried for r = 3, 4, 5, 6 for the
step 1 and for r = 4 for the step 2.)
Step 1. Generate a table of values of φ3(s) We use the numerical integration
for s ∈ [0, 1/10] (the step size is 10−3). We solve numerically the differential
equation for s ∈ [1/10, 104] with the starting point s = 1 (HGM).
Step 2. Evaluate (

eq:cdf_b
39) with b = 1000 with the table and a numerical integration.

Evaluate (
eq:cdf_tail
40) by determining the constant cr by the table. Return I1 + I2 as

the value of F (y).
We evaluate numerically some CDF’s. The results are Figures

fig:cdf-k-1
6 and

fig:cdf-k-2
7.

test7c(R=4,N=1, Y=20);

Pn=xi(0)=0, ds=1/1000, I=0

Pn=xi(1/1000)=5.30476211624276e-07, ds=1/1000, I=1

...

Pn=xi(694)=0.124065695044676, ds=0.99, I=2700

C_alpha=0.637460834571472, Alpha=1/4, Sb=990.01, G=0, myg=0.454572964768408

[0.971613600640028,0.856163639317813,0.115449961322216,0.843171434175572]

By triple integral on Mathematical

mak.m, cdfeven4n1[20] slwcon warning ==> 0.964

5.2 Exact ODE coefficients are necessary

Let us derive a differential equation for φ3 in (
eq:phi3
29). We consider a little more

general integral.
Let r ≥ 3 be a natural number and we assume x1 ∈ R<0, x2 ∈

√
−1R. Put

f(x1, x2) =

∫ ∞

−∞
exp(x1z

2 + x2z
r)dz (42) eq:ak-f
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Figure 6: The CDF Fn(y) for y ∈ [0, 10], r = 4, n = 1, 3, 5, 7, 9, 10 (from the top
to the bottom). fig:cdf-k-1

Lemma 2 The function f satisfies the following A-hypergeometric system

(2θ1 + rθ2 + 1) • f = 0 (43) eq:euler

(∂r1
1 − ∂2) • f = 0, (r = 2r1 is even) (44) eq:box2

(∂r
1 − ∂2

2) • f = 0, (r is odd) (45) eq:box1

where θi = xi∂i = xi
∂

∂xi
.

Proof . Since the integrand is rapidly decaying function with respect z, we
may exchange differentiations and the integral sign. The relation (

eq:box1
45) or (

eq:box2
44)

can be obtained by a straightforward calculation. Let us show (
eq:euler
43). Since

(2θ1 + rθ2) • exp(x1z
2 + x2z

r)

= (2x1z
2 + rx2z

r) exp(x1z
2 + x2z

r)

= z
∂

∂z
exp(x1z

2 + x2z
r),

the relation (
eq:euler
43) can be obtained by the integration by parts. //

Note that, from this proof, the integral∫ ∞

0

exp(x1z
2 + x2z

r)dz

also satisfies the same A-hypergeometric system.

We are going to eliminate ∂1 from the A-hypergeometric system. Let us
consider the case that r = 2r1 is even. Multyplying xr1

1 to (
eq:box2
44), we obtain

L = xr1
1 ∂r1

1 − xr1
1 ∂2

= θ1(θ1 − 1) · · · (θ1 − r1 + 1)− xr1
1 ∂2
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Figure 7: The CDF Fn(y) for y ∈ [10, 210], n = 10, 30, 50, 70, 90, 100. Note that
n = 90, 100 cases (two lower curves) give wrong values because of numerical
error of high powers n. fig:cdf-k-2

From (
eq:euler
43), we have θ1 = −1

2 (rθ2 + 1) and substitute θ1 in L by the righthand
side. Then, we have

L =

r1−1∏
k=0

(
−r

2
θ2 −

1

2
− k

)
− xr1

1 ∂2

=

(
−r

2

)r1 r1−1∏
k=0

(
θ2 +

2k + 1

r

)
− xr1

1 ∂2

We can perform an analogous calculation for the case that r is odd. Thus, we
have the following relations.

lem:ode2i Lemma 3 Fix x1 to a number. The function f(x1, x2) annihilated by the fol-
lowing ordinary differential operator(

−r

2

)r1 r1−1∏
k=0

(
θ2 +

2k + 1

r

)
− xr1

1 ∂2 (r is even) (46) eq:ODEeven

(
−r

2

)r r−1∏
k=0

(
θ2 +

2k + 1

r

)
− xr

1∂
2
2 (r is odd) (47) eq:ODEodd

Multiplying −x2x
−r1
1 to (

eq:ODEeven
46), we have

θ2 − x2x
−r1
1

(
−r

2

)r1 r1−1∏
k=0

(
θ2 +

2k + 1

r

)
It is the differential operator for the generalized hypergeometric function

r1F0

(
1

r
,
3

r
, . . . ,

2r1 − 1

r
; ;x2x

−r1
1

(
−r

2

)r1)
.
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Multiplying −x2x
−r
1 to (

eq:ODEodd
47), we have

θ2(θ2 − 1)− x2
2x

−r
1

(
−r

2

)r r−1∏
k=0

(
θ2 +

2k + 1

r

)
By putting z = x2

2x
2
2x

−r
1

(−r
2

)r
, we obtain the differential equation for rF1. In

fact,

rF1

(
1

2r
,
3

2r
, . . . ,

2r − 1

2r
;
1

2
;

(
−r

2x1

)r

2r−2x2
2

)
is a solution of the ODE.

These discussions yields the following problem.
Problem: Study high precision and aribitrary precision evaluation of the gener-
alized hypergeometric function rF1 globally.

We have

φ3(s) = f

(
−e2π

√
−1/r

2
,−s

)
. (48)

The differential equation contains the constant
(
− e2π

√
−1/r

2

)m
, m = r or m =

r1. The author firstly use approximate value of this constant in the differential
equation and obtained stupid values for φ3. He realized this constant should be
an exact value to get an exact matrix factorial for the Runge-Kutta method.

Trick: Exact ODE yields the exact matrix factorial
∏

k Q(k, h).

5.3 Solving ODE in the complex domain

The characteristic function of r powered sum of the normal random variable Xi

φ(w) is 1√
2π

f(−1/2,
√
−1w) where f is (

eq:ak-f
42). In other words,

φ(w) =

∫ ∞

−∞
exp(

√
−1wxr)

1√
2π

exp(−x2/2)dx (49) eq:airy-koyama-int

This integral is considered in
koyama2019
[7] to study the powered sum of independent

identically and normally distributed random variables. This function is a gener-
alization of the Airy function or the Airy integral and we call it the Ak integral
or the Ak function in this paper to avoid a confusion on the name “generalized
Airy function”. We use the notation

Ak(r, w) = φ(w) =

∫ ∞

−∞
exp(

√
−1wxr)

1√
2π

exp(−x2/2)dx (50) eq:Ak

We want to consider the problem of numerical evaluation of this function.
As is shown in the example below, solving in the complex domain is useful.

When we change the independent variable, we need to translate the initial
value for higher rank ODE. Let us note this fact by an example. Assume we
evalute (

d

dw2

)k

φ(
√
−1w2) =

1√
2π

∫ ∞

−∞
(−tr)k exp(−w2t

r − t2/2)dt
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numerically. Since w =
√
−1w2, we have (d/dw)k =

(
1√
−1

d
dw2

)k
. We need

multipy (1/
√
−1)k for the value of the integral above to get the k-th derivative

of φ(k)(
√
−1w2).

@
@
@R
w0

Figure 8: When w0 is not too small, it works, ak even()

ak_even_rec(4,1/100 | fixed_start=1);

(7.24245451318315e+131+5.74558790493557e+131*@i)

ak_even(4,1/100)

(0.99535327756843+0.0286105510980157*@i)

Trick: Use a good path of integration in the complex domain.

5.4 Using power series and bigfloat for inaccurate data

In
Eeuler2019
[10], the expected Euler characteristic for the largest eigenvalue of a real

Wishart matrix is numerically evaluated for a small sized Wishart matrix by
HGM. Let A = (aij) be a real m × n matrix valued random variable (random
matrix) with the density

p(A)dA, dA =
∏

daij .

2 -

?
w0

Figure 9: When w0 is small, the numerical solution makes a blow-up,
ak even rec()
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We assume that p(A) is smooth and n ≥ m ≥ 2. Define a manifold

M = {hgT | g ∈ Sm−1, h ∈ S ∈ Sn−1} ≃ Sm−1 × Sn−1/ ∼

where (h, g) ∼ (−h,−g) and h and g are regarded as column vectors and hgT

is a rank 1 m× n matrix. Put

f(U) = tr(UA) = gTAh, U ∈ M

and
Mx = {hgT ∈ M | f(U) = gTAh ≥ x}

Assume m = n = 2 and p(A) is a Gaussian distribution

p(A)dA =
1

(2π)mn/2 det(Σ)n/2
exp
{
−1

2
Tr (A−M)TΣ−1(A−M)

}
dA.

The mean is expressed by the variable M = (mij). We gave an integral rep-
resentation of E(χ(Mx)) in

Eeuler2019
[10]. Moreover, we derived an ODE of rank 11 for

(
EQ:secondeuler
51) by the computer algebra package HolonomicFunctions.m.

E[χ(Mx)]

=
1

2π2

∫ ∞

x

dσ

∫ ∞

−∞
db

∫ ∞

−∞
ds

∫ ∞

−∞
dt

s1s2(σ
2 − b2)

(1 + s2)(1 + t2)
exp
{
−1

2
R̃
}
, (51) EQ:secondeuler

where R̃ is a rational function in σ, b, s, t, s1, s2,m11,m21,m22. More precisely,
put

R = s1 (b sin θ sinϕ+ σ cos θ cosϕ−m11)
2
+ s2 (σ sin θ cosϕ− b cos θ sinϕ−m21)

2

+s1 (σ cos θ sinϕ− b sin θ cosϕ)
2
+ s2 (b cos θ cosϕ+ σ sin θ sinϕ−m22)

2
,

replace sin, cos in R by

sin θ =
2s

1 + s2
, cos θ =

1− s2

1 + s2
, sinϕ =

2t

1 + t2
, cosϕ =

1− t2

1 + t2
.

and we set this R̃. We want to evaluate it when m11 = 1,m21 = 2,m22 = 3
(means) and s1 = 103, s2 = 102, See

Eeuler2019
[10] as to details.

The following is a quotation from
Eeuler2019
[10]:

As far as we have tried, it is hard to evaluate (
EQ:secondeuler
51) for these relatively

large parameters si by numerical integration (even the Monte Carlo
integration). Thus, we take a different approach. Using an algebraic
method, we can compute a linear ODE for (

EQ:secondeuler
51) of rank 11 with

respect to the independent variable x. Then we construct series
solutions for this differential equation and use them to extrapolate
results by simulations.

Although this extrapolation method is well-known, we explain it in
a subtle form with application in our evaluation problem. Consider

25



an ODE with coefficients in Q(x) of rank r. Let c ∈ Q be a point
in the x-space and we take r increasing numbers yj ∈ Q, where
j = 0, 1, . . . , r − 1. We construct a series solution fi(x) as a series
in x− (c+ yi). We may further assume that c+ yi is not a singular
point of the ODE for each i. The initial value vector may be taken
suitably so that the series is determined uniquely over Q.

x f(x) simulation
3.8133 0.051146 0.051176
3.8166 0.047517 0.047695
3.82 0.044120 0.044515

Figure 10:
Eeuler2019
[10] Numerical evaluation by extrapolation series fig:values2

The Figure
fig:values2
10 and Figure

fig:far
11 are respectively a table of values and a graph

obtained by extrapolating simulation values by these power series solutions. We
use bigfloat of size 380 to determine series solutions.

Trick: Do not hesitate to use the bigfloat and powerseries. We use series solu-

tions as a basis of interpolation or extrapolation.

6 Computational Challenges and Questions

Computational Try 1 R.Vidunas and A.Takemura
RT2016
[11] derived a system of

linear partial differential equations for the outage probability P (ϕs ≤ x). Try
to make a numerical analysis of this system with Gröbner basis, the defusing
method, or the method to obtain a stabile system.

Problem 1 Derive a good system of non-linear equations satisfied by detΨ(x).
The theory of holonomic quantum field and Hirota bilinear equations might help
to solve this problem. If we can find such system, try a numerical analysis of it.

Computational Try 2 The defusing method for non-linear equation needs to
compute a composition of non-linear functions instead of the matrix factorial.
What is the size of a problem feasible by current computer algebra systems?

Computational Try 3 Try the defusing method for Hk
n(x, y) upto y ∼ 108,

which lies in a range to apply to practical problems.

Computational Try 4 Marumo, Oaku, Takemura gave a method to derive
a linear ODE for φn. The function φ3 for r = 4 satisfies a 2nd order linear
ODE. Try to make a numerical analysis of the system for φn

3 with the defusing
method, or the method to obtain a stabile system.

Problem 2 Give a method for a high precision evalution of the hypergeometric
function rF1 and rF0. Refer, e.g., to

CM2013
[1].
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Figure 11:
Eeuler2019
[10] The extrapolation function with 20000 terms. Solid line is the

extrapolation function, which diverges when x > 3.8633. Dots are values by
simulations. fig:far

Computational Try 5 Try to make a numerical analysis of the ODE of rank
11 for E[χ(Mx)] with the defusing method, or the method to obtain a stabile
system.
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