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Abstract

We introduce A-hypergeometric differential-difference equation H 4
and prove that its holonomic rank is equal to the normalized volume
of A with giving a set of convergent series solutions.

1 Introduction

In this paper, we introduce A-hypergeometric differential-difference equation
H 4 and study its series solutions and holonomic rank.

Let A = (aij)i=1,....d,j=1,...n be a dxn-matrix whose elements are integers.
We suppose that the set of the column vectors of A spans Z¢ and there is
no zero column vector. Let a; be the i-th column vector of the matrix A
and F(8,x) the integral

F(B,x) = /Cexp (Z :Bit“i) 8 Lay, t=(t1,...,tq), B=(B1,.-.,04)-

=1

The integral F(3,x) satisfies the A-hypergeometric differential system as-
sociated to A and § “formally”. We use the word “formally” because, there
is no general and rigorous description about the cycle C' ([11, p.222]).

We will regard the parameters (3 as variables. Then, the function F'(s, )
on the (s, z) space satisfies differential-difference equations “formally”, which
will be our A-hypergeometric differential-difference system.

Rank theories of A-hypergeometric differential system have been devel-
oped since Gel'fand, Zelevinsky and Kapranov [4]. In the end of 1980’s,
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under the condition that the points lie on a same hyperplane, they proved
that the rank of A-hypergeometric differential system H () agrees with
the normalized volume of A for any parameter 3 € C? if the toric ideal
I4 has the Cohen-Macaulay property. After their result had been gotten,
many people have studied on conditions such that the rank equals the nor-
malized volume. In particular, Matusevich, Miller and Walther proved that
I4 has the Cohen-Macaulay property if the rank of H4(3) agrees with the
normalized volume of A for any 8 € C? ([5]).

In this paper, we will introduce A-hypergeometric differential-difference
system, which can be regarded as a generalization of difference equation
for the I'-function, the Beta function, and the Gauss hypergeometric dif-
ference equations. As the first step on this differential-difference system,
we will prove our main Theorem 3 utilizing theorems on A-hypergeometric
differential equations, construction of convergent series solutions with a ho-
mogenization technique, uniform convergence of series solutions, and Mut-
sumi Saito’s results for contiguity relations [9], [10], [11, Chapter 4]. The
existence theorem 2 on convergent series fundamental set of solutions for
A-hypergeometric differential equation for generic (3 is the second main the-
orem of our paper. Finally, we note that, for studying our 4-hypergeometric
differential-difference system, we wrote a program “yang” ([6], [8]) on a com-
puter algebra system Risa/Asir and did several experiments on computers
to conjecture and prove our theorems.

2 Holonomic rank

Let D be the ring of differential-difference operators
C(:El,...,xn,sl,...,sd,al,...,8n,51,...,Sd,S;l,...,Sgl>
where the following (non-commutative) product rules are assumed

S;s; = (81‘ + I)SZ‘, S»_ISZ‘ = (Si - l)Si_l, O;ix; = x2;0; + 1

)

and the other types of the product of two generators commute.

Holonomic rank of a system of differential-difference equations will be
defined by using the following ring of differential-difference operators with
rational function coefficients

U=C(51,.-,84T1, -, Tn){S1,. .., Sa, Sy oo, S71, 01,0, On)

It is a C-algebra generated by rational functions in s, ..., sq, 21, ..., T, and
differential operators 01, . . . , 9, and difference operators Sy, ..., Sy, Sfl, cees Sgl.



The commutation relations are defined by 9;¢(s, x) = ¢(s, x)@i—i—a%ci, Sic(s,x) =
c(s1y...,8i+1,...,84,%)5;, S[lc(s,x) =c(S1y...,8 — 1,...,sd,a:)SZ-_1.
Let I be a left ideal in D. The holonomic rank of I is the number

rank([) = dimg ) U/(UI).

In case of the ring of differential operators (d = 0), the definition of the
holonomic rank agrees with the standard definition of holonomic rank in
the ring of differential operators.

For a given left ideal I, the holonomic rank can be evaluated by a Grébner
basis computation in U.

3 A-hypergeometric differential-difference equations

Let A = (aij)i=1,..dj=1,..n be an integer d x n matrix of rank d. We
assume that the column vectors {a;} of A generates Z? and there is no
zero vector. The A-hypergeometric differential-difference system H 4 is the
following system of differential-difference equations

Za”x]aj—sl .f 0 fori:1,...,d and
7j=1

<8j_HSia¢j>.f = 0 forj=1,...,n.
i=1

Note that H 4 contains the toric ideal I4. (use [12, Algorithm 4.5] to prove
it.)

Definition 1. Define the unit volume in R¢ as the volume of the unit
simplex {0,eq,...,eq}. For a given set of points A = {ay,...,a,} in R,
the normalized volume vol(.A) is the volume of the convex hull of the origin
and A.

Theorem 1. A-hypergeometric differential-difference system H 4 has lin-
early independent vol(A) series solutions.

The proof of this theorem is divided into two parts. The matrix A is
called homogeneous when it contains a row of the form (1,...,1). If A is
homogeneous, then the associated toric ideal 14 is homogeneous ideal [12].
The first part is the case that A is homogeneous. The second part is the
case that A is not homogeneous.



Proof. (A is homogeneous.) We will prove the theorem with the homo-
geneity assumption of A. In other words, we suppose that A is written as

follows:
Ao <1 1> ‘
*

Gel’fand, Kapranov, Zelevinski gave a method to construct m = vol(A)
linearly independent solutions of H4 () with the homogeneity condition of
A ([4]). They suppose that 3 is fixed as a generic C-vector. Let us denote
their series solutions by fi(5;x),..., fm(B;2z). It is easy to see that the
functions f;(s;x) are solutions of the differential-difference equations H 4.
We can show, by carefully checking the estimates of their convergence proof,
that there exists an open set in the (s,x) space such that f;(s;z) is locally
uniformly convergent with respect to s and z. Let us sketch their proof to
see that their series converge as solutions of H 4. The discussion is given
in [4], but we need to rediscuss it in a suitable form to apply it to the case
of inhomogeneous A.

Let B be a matrix of which the set of column vectors is a basis of Ker(A :
Q" — Q%) and is normalized as follows:

B= e M(n,n—d,Q).
*

We denote by b(®) the i-th column vector of B and by b;; the j-th element
of b, Then the homogeneity of A implies

zn: bij =0.
j=1

Let us fix a regular triangulation A of A = {ay,...,a,} following the
construction by Gel'fand, Kapranov, Zelevinsky. Take a d-simplex 7 in the
triangulation A. If A € C" is admissible for a d-simplex 7 of {1,2,...,n}
(admissible < for all j & 7, A\; € Z), and A\ = s holds, then H 4 has a
formal series solution

A
¢T()\§ 55') = lGZL m>

where L = Ker(A : Z" — Z%) and T(A+1+1) = [[.; T(\; + ; + 1) and

when a factor of the denominator of a term in the sum, we regard the term



is zero. Put #7 = n’. Note that there exists an open set U in the s space
such that \;, ¢ € 7 lie in a compact set in c” \ Z" . Moreover, this open set
U can be taken as a common open set for all d-simplices in the triangulation
A and the associated admissible A\’s when the integral values \; (j & 7) are
fixed for all 7 € A.

Put L' = {(ki,....kn_q) € Z"% | 7 kb € Z"}. Then, L is Z-
submodule of Z"% and L = {Z?;ld kib® | k € L'}. In other words, L can
be parametrized with L’. Without loss of the generality, we may suppose
that 7 ={n —d+1,...,n}. Then, we have

n—d (i)
r(Nz) = Z F()\Jj:;r; 3 _ Z o i/\gi::;;:(i) )
lel kel i=1 ¥
Note that the first n — d rows of B are normalized. Then, we have
n—d
N+ kiby+1l=X+k+1€Z  (j=1,...,n—d
i=1
Since 1/T'(0) = 1/T(—1) = 1/T'(=2) = --- = 0, the sum can be written as

x)\‘i‘Z?;ld kib(i)

(A = -
Pr(X @) 2 PO+ S kid® + 1)

keL’
Aj+kj+1€Z~0
(§=1,....n—d)
Moreover, when we put
k; = /\j—l-kj, (jzl,...,n—d)

n—d
No= )\—Z)\ib(i)

=1
A= (AL And)

we have

n—d n—d n—d
Do kabD == x4y K
=1 i=1 i—1



Hence, the sum ¢, (\; ) can be written as

mA_Z;L:}d A J:Z;Zfi kgb@)

QZ)T()\, ./L') = — : - ‘
k/ezL’:+5\ (A - Z?:fi Aib) + Z?:ld kb + 1)
Kezl
(L) \ k! (n—d)\ k'
S (zb )kl...(b Yo
k’/EL/—l-/\ (>\I + Z k/b(l )
k’ezgg

Note that our series with the coefficients in terms of Gamma functions agree
with those in [11, §3.4], which do not contain Gamma functions, by multiply-
ing suitable constants. Hence we will apply some results on series solutions
in [11] to our discussions in the sequel.

Lemma 1. Let (k;) € (Z>0)™ and (b;j) € M(m,n, Q). Suppose that

Zkibij € Z, Zbij =0
i=1 j=1

and parameters X\ = (A1,...,\,) belongs to a compact set K. Then there
exists a positive number r, which is independent of A, such that the power
series

( b<1>)k:/1 . ( b("*d))k,’nid

DOV + 305 Kib@ + 1)

k’EL’-l-)\
k’ezgg

b(”,
b

)

|xb(n—d)

is convergent in |z | <.

The proof of this lemma can be done by elementary estimates of I" func-
tions. See [7, pp.18-21] if readers are interested in the details. Since
n—d
el +he > kpez"
i=1
it follows from Lemma 1 that there exists a positive constant r such that

the series converge in

V] 2T < (3.1)

for any s in the open set U. We may suppose r < 1. Take the log of (3.1).
Then we have

b*) . (log|z1],...,log|z,]) <log|r] <0 Vke{l,....n—d}  (3.2)



Following [4], for the simplex 7 and r, we define the set C'(A,7,r) as
follows.

> —1 ]
C(4,7,1) = {weR” e R, w@-—«o,ai){ el Zf“’}
=0, 1ET,
The condition (3.2) and (—log|z1],...,—log|z,|) € C(A,T,r) is equivalent

(see [3, section 4] as to the proof).

Since A is a regular triangulation of A, [ . C(A,7,7) is an open set.
Therefore, when s lies in the open set U and — log |x| lies in the above open
set, the vol(A) linearly independent solutions converge. O

Let us proceed on the proof for the inhomogeneous case. We suppose
that A is not homogeneous and has only non-zero column vectors. We define
the homogenized matrix as

1 - 1 1
~ ailr -+ Qain 0
A= . ..l eMd+1,n+1,7).
agr -+ Qdn 0
For s = (s1,...,5,) € C? and a generic complex number sy, we put § =

(S0,51,---,84). We suppose that 7 ={n—d+1,...,d,d+ 1} is a (d + 1)-
simplex. Let us take an admissible A\ for 7 such that AN = 5 and A =
(A1, s Ant1) € R™! as in the proof of the homogeneous case. Put A =
(AL, ..., An). Consider the solution of the hypergeometric system for A

~)‘+Zn d k/b(z)

é’r(j\yi'> - Z (A—an dk/b(z )

eL’'ns

and the series

)‘+Z m
H"?': X i= 1
or(Na)= Y I o
werns Lj=1 T + 221 Kibij + 1)
(Z=(21,...,%py1), x = (21,...,2,)). Here, the set S is a subset of L' such

that an integer in Z<p does not appear in the arguments of the Gamma
functions in the denominator. We note that L' for A and L' for A agree,
which can be proved as follows. Let (ki,...,kn+1) be in the kernel of A in
Q" *!. Since A contains the row of the form (1,...,1), then (ki,...,k,) € Z"
implies that k,41 is an integer. The conclusion follows from the definition
of L.



Definition 2. We call ¢,(\; ) the dehomogenization of ¢, (\; &).

Intuitively speaking, the dehomogenization is defined by “forgetting” the
last variable x,1 associated I' factors. See Example 1.

Formal series solutions for the hypergeometric system for inhomogeneous
A do not converge in general. However, we can construct vol(A) convergent
series solutions as the dehomogenization of a set of series solutions for A
hypergeometric system associated to a regular triangulation on A induced
by a “nice” weight vector w(e), which we will define. Put w = (1,...,1,0) €
R"*1. Since the Grobner fan for the toric variety I 4 is a polyhedral fan,
the following fact holds.

Lemma 2. For any ¢ > 0, there exists © € R"! such that w(e) := 0 + €0
lies in the interior of a mazimal dimensional Grobner cone of I;. We may
also suppose Vp41 = 0.

Proof. Let us prove the lemma. The first part is a consequence of an ele-
mentary property of the fan. When [ is a homogeneous ideal in the ring of
polynomials of n + 1 variables, we have

ing(I) = inaﬂ(l,...,l) (I) (33)

for any ¢t and any weight vector @. In other words, 4 and @+ t(1,...,1) lie
in the interior of the same Grébner cone.
When the weight vector w(e) = w+e0 lies in the interior of the Grobner

cone, we define a new ¥ by © — Up41(1,...,1). Since the initial ideal does
not change with this change of weight, we may assume that v,4+; = 0 for
the new 2. O

Since the Grébner fan is a refinement of the secondary fan and hence
w(e) is an interior point of a maximal dimensional secondary cone, it induces
a regular triangulation ([12] p.71, Proposition 8.15). We denote by A the
regular triangulation on A induced by w(e). For a d-simplex 7 € A, we
define b(® as in the proof of the homogeneous case. Since the weight for
Gn+1 is the lowest, n + 1 € 7 holds. We can change indices of ay,...,a, so
that 7={n—d+1,...,n+ 1} without loss of generality.

Let us prove that the dehomogenized series ¢,(\; z) converge. It follows
from a characterization of the support of the series [11, Theorem 3.4.2] that
we have

n—d
w(e) - (Z ki@ 4 )\) >aw(e)-A, VK elns.
=1

8



Here, S is a set such that Z<y does not appear in the denominator of the I
factors. Take the limit € — 0 and we have

n—d
WYy kpD >0, VK eLns

From Lemma 2, @(e) € C(A, 1) holds and then
w(e) - b >0

Similarly, by taking the limit € — 0, we have

@ = znj bij > 0.
j=1

Therefore, we have Z"H b;; = 0, the inequality b;,+1 < 0 holds for all 1.
Since k] > —Aq, ..., k:;L_ > —M\n—d, we have

n—d n—d

/
D Kbintr <= Aibinia
i—1 i=1

Note that the right hand side is a non-negative number. Suppose that A1
is negative. In terms of the Pochhammer symbol we have I'(A\,41 — m) =
L'(As1)(=Ans1+1;m) "1 (=1)™, then we can estimate the (n+1)-th gamma
factors as

n—d -1

n—d
A1+ D kbini +1)| = T+ 1) ‘ <—)\n+1; - kgbi,n-&-l)
=1

i=1

n—d -1
< dIT(Ang1 + 1) - | <—)\n+1; - Z )\ibi,n+l>
i—1

= c (3.4)

Here, ¢’ and c are suitable constants.

When A\,41 > 0, there exists only finite set of values such that A, 1 +
ST k!bine1 > 0. Then, we can show the inequality (3.4) in an analogous
way.

Now, by (3.4), we have

1
[T DO + 0 Kby + 1)

1

< d
DO+ S k0 + 1)

9



We note that the right hand side is the coefficient of the series solution for the
homogeneous system for A and the series converge for (—log |z1], ..., —log|zn1]) €
C(A,7,r) (r < 1) uniformly with respect to § in an open set.
Put z,4+1 = 1. Since —log |zp4+1]| = 0 and w(e) € {y | yn+1 = 0}, we can

see that .

m C<A7 T, T) N {y ‘ Yn+1 = 0}

TEA
is a non-empty open set of R™. Therefore the dehomogenized series ¢, (\; x)
converge in an open set in the (s, x) space.

Theorem 2. The dehomogenized series ¢-(X\; x) satisfies the hypergeometric
differential-difference system H 5 and they are linearly independent conver-
gent solutions of H o4 when \ runs over admissible exponents associated to
the initial system induced by the weight vector w(e).

Proof. Since A\ = s, it is easy to show that they are formal solutions of
the differential-difference system H 4. We will prove that we can construct
m linearly independent solutions. We note that the weight vector w(e) =
(1,...,1,0) + ev € R""! is in the neighborhood of (1,...,1,0) € R"*! and
in the interior of a maximal dimensional Grébner cone of 1 ;.

It follows from [11, p.119] that the minimal generating set of iny ;1 0y {3
does not contain 0y, 1. Since

ingey I3 = iny(ing,..1,0)15)
does not contain 9,1, we have
M = (ing) L 5) = (iny(e) La) in C[01,...,0n41].
Here, we define w(e) with w(e) = (w(e),0). Put 0= (01,...,0,41). From
[11, Theorem 3.1;3], for generic 8 = (06o,0), 0 € C~d, the initial ideal

N (_p(e),i(e)) H 5(0) is generated by ing.)(/;) and A0 — 3. Let us denote by
T (M) the standard pairs of M. From [11, Theorem 3.2.10], the initial ideal

(ing () Iz, A0 — B) (3.5)
has #T(M) = vol(A) linearly independent solutions of the form
{#] (0. 7) e T(M)}

Here, ) is defined by Ni=a; € Z>o, Vi ¢ T and AX = (3. Note that \ is
admissible for the d-simplex T'.

10



Since we have
(ing(e) L z) = (inw(e) La)
the difference between
(iny(e) L4, A0 — B) (3.6)

and (3.5) is only
01+ -+ On + g1 — Bo

and other equations do not contain x,+1, On+1-
For any (0*,T) € T(M), we have n+1 € T. Therefore, the two solution
spaces (3.6) and (3.5) are isomorphic under the correspondence

2 7 (3.7)
Here, we put A = (A, Ayp1) and A,y is defined by
DAt A~ =0
=1
It follows from [11, Theorem 2.3.11 and Theorem 3.2.10] that
{3 | (0°,7) € T(M)}

are C-linearly independent. Therefore, from the correspondence (3.7), the
functions

{a* [ (9°,T) € T(M)},

of which cardinality is vol(A), are C-linearly independent. Hence, series
solutions with the initial terms

{mxil) | (8°,T) € T(M)}

are C linearly independent, which implies the linear independence of series
solutions with these starting terms [11]. We have completed the proof of the
theorem and also that of Theorem 1. O

Theorem 3. The holonomic rank of H 4 is equal to the normalized volume
of A.

11



Proof. First we will prove rank(H 4) < vol(A). It follows from the Adolph-
son’s theorem ([1]) that the holonomic rank of A-hypergeometric system

H 4 () is equal to the normalized volume of A for generic parameters 3. It
implies that the standard monomials for a Grébner basis of the A-hypergeometric
system H4(s) in C(s,z)(01,...,0,) consists of vol(A) elements. We note
that elements in the Grobner basis can be regarded as an element in the ring

of differential-difference operators with rational function coefficients U. We
denote by 9; and r; the creation and annihilation operators. The existence

of them are proved in [10, Chapter 4]. Then, we have

Hj=0; = [[ 57" € Ha
=1

and

Bj=r; — HS?” €cH,y, 1€ C(s,z)(01,...,0n).
i=1

Since the column vectors of A generate the lattice Z?, we obtain from B;’s
and H;’s elements of the form S; — p(s,z,0), Sl-_l —q(s,x,0) € Hy. Tt
implies the number of standard monomials of a Grébner basis of H 4 with
respect to a block order such that Si,...,S, > Sfl, oS> 01,000, 0, s
less than or equal to vol(A).

Second, we will prove rank(H 4) > vol(A). We suppose that rank(H 4) <
vol(A) and will induce a contradiction. For the block order Si,---,Sq >
Sfl, Sy Sgl > 01, ,0p, we can show that the standard monomials T of a
Grobner basis of H 4 in U contains only differential terms and #71' < vol(A)
by the assumption. Let 7" be the standard monomials of Grébner basis G(s)
of Ha(s) in the ring of differential operators with rational function coeffi-
cients D(s). Note that #T" = vol(A). Then T is a proper subset of the set
T'. For r € T'"\ T, it follows that

0" = Z col(x,8)0% mod H 4.
acT
From Theorem 2, we have convergent series solutions fi(s, ), , fm(s, )

of H 4, where m = vol(A). So,

O e fi= calr,5)0%e f; (3.8)
acT
Since fi(s,x),..., fm(s,x) are linearly independent, the Wronskian standing

12



for T'

flssa) o fm(Bi @)
W(T'; f)(x,5) = | Nilsie) - P fulBi)] (8 e T\ {1})
is non-zero for generic number s. However r € T and (3.8) induce the
Wronskian W (T"; f)(s, ) is equal to zero.
Finally, by rank(H 4) < vol(A) and rank(H 4) > vol(A), the theorem is
proved. O

- 1 1 11

Example 1. Put A = (1 2 3) and A = (1 5 3 0
integral [11, p.223].

The matrix A is homogeneous. For w(e) = (1,1,1,0) + ﬁ(l,0,0,0),

the initial ideal ing.) (I ;) is generated by 03,0102, 0103, 05. Note that the

>. This is Airy type

initial ideal does not contain d4. We solve the initial system </~10~ — §) .

g =0, (ing)(I;)) ® g = 0. The standard pairs (8%, T) for ing(I;) are
(0903,13,41), (8909, {3,4}), (8902, {3,4}). Hence, the solutions for the ini-
tial system are

x(l]m%xi()’sl—Q)/Swzo—l—(sl—2)/3, x?x8x§1/3$20—51/37 113(1]1'%.%':()’81_4)/31'20_2_(51_4)/3
([11]). Therefore, the A-hypergeometric differential-difference system H ;

13



has the following series solutions.

s1—2

~ ~ . 50 ﬂ ﬁ : 3
hAE) = o <$4> <3«"4>
_ _ k1 _ _ ko
<x1m3 1/3m4 2/3) (1‘2:1?3 2/3954 1/3>

k1 2kat 1N/ 35051 2k1 k212
klzo,zlf%Zl kil (ky + DID (M=) (o=t =mts)
(kl,k‘Q)eL'

51

Po(N, @) = af (373) )

T4

k1 ko
-1/3 —-2/3 -2/3 —-1/3

Z | | s1—k1—2k2+3 3s0—s1—2k1—ko+3
f1 30, ka0 Fq koI T( 3 )T( 3 )
(k1,k2)eL’

kl k2
-1/3_—-2/3 -2/3 —1/3

— k1 —2ko— 3sg—s51—2k1—ko+1
klzozkz22 ki!(k2 4 2)IT(% 132 2 I)F( S - )
(k1 ,k2)EL!

Here,
L' = {(kl, kig) | k1 =0mod3, kg = OmodB}U{(kl,kg) | ki =1mod3,ky =1 m0d3}

The matrix A is not homogeneous and by dehomogenizing the series solu-
tion for A we obtain the following series solutions for the A-hypergeometric
differential-difference system H 4.

—1/3\M —2/3\ k2
51-2 L1Z3 T2T3

d1(\,x) = moxy? —
’ klzo,z:lmz—l kil(ke + 1)ID(= k1372k2+1>
(k1,k2)eL’

o Z <$1x51/3>k1 (mxj/:z) ko

p2(A\, ) = T3 kl!]@!r(%)

k120, k2>0
(k1,k2)eL’

—1/3\ k1 —2/3\ k2
s1—4 IE1$3 1’2.%'3

o3\, x) = 2, ° —
) =T Rk IR
(k1,k2)eL’

14



Here ¢y (x) is the dehomogenization of ¢y ().

Finally, let us present a difference Pfaffian system for A. It can be derived

by using Grobner bases of H 4 and has the following form:

f 0 0 1 f
3ziz3—4z3  2(s1—1 2
Si| wsdzef | = [ —F2 m%ﬁigg A 61):2”1 r303 @ f
S x
Sl L4 f ﬁ T 22s —ﬁ Sl L f
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