
Holonomic rank of A-hypergeometric

differential-difference equations

Katsuyoshi Ohara∗and Nobuki Takayama†

June 18, 2007

Abstract

We introduceA-hypergeometric differential-difference equation HA

and prove that its holonomic rank is equal to the normalized volume
of A with giving a set of convergent series solutions.

1 Introduction

In this paper, we introduceA-hypergeometric differential-difference equation
HA and study its series solutions and holonomic rank.

Let A = (aij)i=1,...,d,j=1,...,n be a d×n-matrix whose elements are integers.
We suppose that the set of the column vectors of A spans Zd and there is
no zero column vector. Let ai be the i-th column vector of the matrix A
and F (β, x) the integral

F (β, x) =
∫

C
exp

(
n∑

i=1

xit
ai

)
t−β−1dt, t = (t1, . . . , td), β = (β1, . . . , βd).

The integral F (β, x) satisfies the A-hypergeometric differential system as-
sociated to A and β “formally”. We use the word “formally” because, there
is no general and rigorous description about the cycle C ([11, p.222]).

We will regard the parameters β as variables. Then, the function F (s, x)
on the (s, x) space satisfies differential-difference equations “formally”, which
will be our A-hypergeometric differential-difference system.

Rank theories of A-hypergeometric differential system have been devel-
oped since Gel’fand, Zelevinsky and Kapranov [4]. In the end of 1980’s,
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under the condition that the points lie on a same hyperplane, they proved
that the rank of A-hypergeometric differential system HA(β) agrees with
the normalized volume of A for any parameter β ∈ Cd if the toric ideal
IA has the Cohen-Macaulay property. After their result had been gotten,
many people have studied on conditions such that the rank equals the nor-
malized volume. In particular, Matusevich, Miller and Walther proved that
IA has the Cohen-Macaulay property if the rank of HA(β) agrees with the
normalized volume of A for any β ∈ Cd ([5]).

In this paper, we will introduce A-hypergeometric differential-difference
system, which can be regarded as a generalization of difference equation
for the Γ-function, the Beta function, and the Gauss hypergeometric dif-
ference equations. As the first step on this differential-difference system,
we will prove our main Theorem 3 utilizing theorems on A-hypergeometric
differential equations, construction of convergent series solutions with a ho-
mogenization technique, uniform convergence of series solutions, and Mut-
sumi Saito’s results for contiguity relations [9], [10], [11, Chapter 4]. The
existence theorem 2 on convergent series fundamental set of solutions for
A-hypergeometric differential equation for generic β is the second main the-
orem of our paper. Finally, we note that, for studying our A-hypergeometric
differential-difference system, we wrote a program “yang” ([6], [8]) on a com-
puter algebra system Risa/Asir and did several experiments on computers
to conjecture and prove our theorems.

2 Holonomic rank

Let D be the ring of differential-difference operators

C〈x1, . . . , xn, s1, . . . , sd, ∂1, . . . , ∂n, S1, . . . , Sd, S
−1
1 , . . . , S−1

d 〉
where the following (non-commutative) product rules are assumed

Sisi = (si + 1)Si, S−1
i si = (si − 1)S−1

i , ∂ixi = xi∂i + 1

and the other types of the product of two generators commute.
Holonomic rank of a system of differential-difference equations will be

defined by using the following ring of differential-difference operators with
rational function coefficients

U = C(s1, . . . , sd, x1, . . . , xn)〈S1, . . . , Sd, S
−1
1 , . . . , S−1

d , ∂1, . . . , ∂n〉
It is a C-algebra generated by rational functions in s1, . . . , sd, x1, . . . , xn and
differential operators ∂1, . . . , ∂n and difference operators S1, . . . , Sd, S

−1
1 , . . . , S−1

d .
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The commutation relations are defined by ∂ic(s, x) = c(s, x)∂i+ ∂c
∂xi

, Sic(s, x) =
c(s1, . . . , si + 1, . . . , sd, x)Si, S−1

i c(s, x) = c(s1, . . . , si − 1, . . . , sd, x)S−1
i .

Let I be a left ideal in D. The holonomic rank of I is the number

rank(I) = dimC(s,x)U/(UI).

In case of the ring of differential operators (d = 0), the definition of the
holonomic rank agrees with the standard definition of holonomic rank in
the ring of differential operators.

For a given left ideal I, the holonomic rank can be evaluated by a Gröbner
basis computation in U.

3 A-hypergeometric differential-difference equations

Let A = (aij)i=1,...,d,j=1,...,n be an integer d × n matrix of rank d. We
assume that the column vectors {ai} of A generates Zd and there is no
zero vector. The A-hypergeometric differential-difference system HA is the
following system of differential-difference equations




n∑

j=1

aijxj∂j − si


 • f = 0 for i = 1, . . . , d and

(
∂j −

n∏

i=1

S
−aij

i

)
• f = 0 for j = 1, . . . , n.

Note that HA contains the toric ideal IA. (use [12, Algorithm 4.5] to prove
it.)

Definition 1. Define the unit volume in Rd as the volume of the unit
simplex {0, e1, . . . , ed}. For a given set of points A = {a1, . . . , an} in Rd,
the normalized volume vol(A) is the volume of the convex hull of the origin
and A.

Theorem 1. A-hypergeometric differential-difference system HA has lin-
early independent vol(A) series solutions.

The proof of this theorem is divided into two parts. The matrix A is
called homogeneous when it contains a row of the form (1, . . . , 1). If A is
homogeneous, then the associated toric ideal IA is homogeneous ideal [12].
The first part is the case that A is homogeneous. The second part is the
case that A is not homogeneous.
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Proof. (A is homogeneous.) We will prove the theorem with the homo-
geneity assumption of A. In other words, we suppose that A is written as
follows:

A =
(

1 · · · 1
∗

)
.

Gel’fand, Kapranov, Zelevinski gave a method to construct m = vol(A)
linearly independent solutions of HA(β) with the homogeneity condition of
A ([4]). They suppose that β is fixed as a generic C-vector. Let us denote
their series solutions by f1(β; x), . . . , fm(β; x). It is easy to see that the
functions fi(s;x) are solutions of the differential-difference equations HA.
We can show, by carefully checking the estimates of their convergence proof,
that there exists an open set in the (s, x) space such that fi(s;x) is locally
uniformly convergent with respect to s and x. Let us sketch their proof to
see that their series converge as solutions of HA. The discussion is given
in [4], but we need to rediscuss it in a suitable form to apply it to the case
of inhomogeneous A.

Let B be a matrix of which the set of column vectors is a basis of Ker(A :
Qn → Qd) and is normalized as follows:

B =




1
. . .

1
∗


 ∈ M(n, n− d,Q).

We denote by b(i) the i-th column vector of B and by bij the j-th element
of b(i). Then the homogeneity of A implies

n∑

j=1

bij = 0.

Let us fix a regular triangulation ∆ of A = {a1, . . . , an} following the
construction by Gel’fand, Kapranov, Zelevinsky. Take a d-simplex τ in the
triangulation ∆. If λ ∈ Cn is admissible for a d-simplex τ of {1, 2, . . . , n}
(admissible ⇔ for all j 6∈ τ , λj ∈ Z), and Aλ = s holds, then HA has a
formal series solution

φτ (λ; x) =
∑

l∈L

xλ+l

Γ(λ + l + 1)
,

where L = Ker(A : Zn → Zd) and Γ(λ + l + 1) =
∏n

i=1 Γ(λi + li + 1) and
when a factor of the denominator of a term in the sum, we regard the term
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is zero. Put #τ = n′. Note that there exists an open set U in the s space
such that λi, i ∈ τ lie in a compact set in Cn′ \Zn′ . Moreover, this open set
U can be taken as a common open set for all d-simplices in the triangulation
∆ and the associated admissible λ’s when the integral values λj (j 6∈ τ) are
fixed for all τ ∈ ∆.

Put L′ = {(k1, . . . , kn−d) ∈ Zn−d | ∑n−d
i=1 kib

(i) ∈ Zn}. Then, L′ is Z-
submodule of Zn−d and L = {∑n−d

i=1 kib
(i) | k ∈ L′}. In other words, L can

be parametrized with L′. Without loss of the generality, we may suppose
that τ = {n− d + 1, . . . , n}. Then, we have

φτ (λ; x) =
∑

l∈L

xλ+l

Γ(λ + l + 1)
=

∑

k∈L′

xλ+
Pn−d

i=1 kib
(i)

Γ(λ +
∑n−d

i=1 kib(i) + 1)

Note that the first n− d rows of B are normalized. Then, we have

λj +
n−d∑

i=1

kibij + 1 = λj + kj + 1 ∈ Z (j = 1, . . . , n− d)

Since 1/Γ(0) = 1/Γ(−1) = 1/Γ(−2) = · · · = 0, the sum can be written as

φτ (λ; x) =
∑

k∈L′
λj+kj+1∈Z>0

(j=1,...,n−d)

xλ+
Pn−d

i=1 kib
(i)

Γ(λ +
∑n−d

i=1 kib(i) + 1)

Moreover, when we put

k′j = λj + kj , (j = 1, . . . , n− d)

λ′ = λ−
n−d∑

i=1

λib
(i)

λ̂ = (λ1, . . . , λn−d)

we have
n−d∑

i=1

kib
(i) = −

n−d∑

i=1

λib
(i) +

n−d∑

i=1

k′ib
(i)
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Hence, the sum φτ (λ; x) can be written as

φτ (λ; x) =
∑

k′∈L′+λ̂
k′∈Zn−d

≥0

xλ−Pn−d
i=1 λib

(i) · x
Pn−d

i=1 k′ib
(i)

Γ(λ−∑n−d
i=1 λib(i) +

∑n−d
i=1 k′ib(i) + 1)

= xλ′
∑

k′∈L′+λ̂
k′∈Zn−d

≥0

(xb(1))k′1 · · · (xb(n−d)
)k′n−d

Γ(λ′ +
∑n−d

i=1 k′ib(i) + 1)

Note that our series with the coefficients in terms of Gamma functions agree
with those in [11, §3.4], which do not contain Gamma functions, by multiply-
ing suitable constants. Hence we will apply some results on series solutions
in [11] to our discussions in the sequel.

Lemma 1. Let (ki) ∈ (Z≥0)m and (bij) ∈ M(m, n,Q). Suppose that

m∑

i=1

kibij ∈ Z,

n∑

j=1

bij = 0

and parameters λ = (λ1, . . . , λn) belongs to a compact set K. Then there
exists a positive number r, which is independent of λ, such that the power
series ∑

k′∈L′+λ̂
k′∈Zn−d

≥0

(xb(1))k′1 · · · (xb(n−d)
)k′n−d

Γ(λ′ +
∑n−d

i=1 k′ib(i) + 1)

is convergent in |xb(1) |, · · · , |xb(n−d) | < r.

The proof of this lemma can be done by elementary estimates of Γ func-
tions. See [7, pp.18–21] if readers are interested in the details. Since

k′ ∈ L′ + λ̂ ⇐⇒
n−d∑

i=1

k′ib
(i) ∈ Zn

it follows from Lemma 1 that there exists a positive constant r such that
the series converge in

|xb(1) |, · · · , |xb(n−d) | < r (3.1)

for any s in the open set U . We may suppose r < 1. Take the log of (3.1).
Then we have

b(k) · (log |x1|, . . . , log |xn|) < log |r| < 0 ∀k ∈ {1, . . . , n− d} (3.2)
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Following [4], for the simplex τ and r, we define the set C(A, τ, r) as
follows.

C(A, τ, r) =

{
ψ ∈ Rn

∣∣∣∣∣ ∃ϕ ∈ Rd, ψi − (ϕ, ai)

{
> − log |r|, i 6∈ τ,

= 0, i ∈ τ,

}

The condition (3.2) and (− log |x1|, . . . ,− log |xn|) ∈ C(A, τ, r) is equivalent
(see [3, section 4] as to the proof).

Since ∆ is a regular triangulation of A,
⋂

τ∈∆ C(A, τ, r) is an open set.
Therefore, when s lies in the open set U and − log |x| lies in the above open
set, the vol(A) linearly independent solutions converge.

Let us proceed on the proof for the inhomogeneous case. We suppose
that A is not homogeneous and has only non-zero column vectors. We define
the homogenized matrix as

Ã =




1 · · · 1 1
a11 · · · a1n 0
...

...
...

ad1 · · · adn 0


 ∈ M(d + 1, n + 1,Z).

For s = (s1, . . . , sn) ∈ Cd and a generic complex number s0, we put s̃ =
(s0, s1, . . . , sd). We suppose that τ = {n − d + 1, . . . , d, d + 1} is a (d + 1)-
simplex. Let us take an admissible λ for τ such that Ãλ̃ = s̃ and λ̃ =
(λ1, . . . , λn+1) ∈ Rn+1 as in the proof of the homogeneous case. Put λ =
(λ1, . . . , λn). Consider the solution of the hypergeometric system for Ã

φ̃τ (λ̃; x̃) =
∑

k′∈L′∩S

x̃λ+
Pn−d

i=1 k′ib
(i)

Γ(λ +
∑n−d

i=1 k′ib(i) + 1)

and the series

φτ (λ; x) =
∑

k′∈L′∩S

∏n
j=1 x

λ+
Pn−d

i=1 k′ibij

j∏n
j=1 Γ(λj +

∑n−d
i=1 k′ibij + 1)

(x̃ = (x1, . . . , xn+1), x = (x1, . . . , xn)). Here, the set S is a subset of L′ such
that an integer in Z≤0 does not appear in the arguments of the Gamma
functions in the denominator. We note that L′ for Ã and L′ for A agree,
which can be proved as follows. Let (k1, . . . , kn+1) be in the kernel of Ã in
Qn+1. Since Ã contains the row of the form (1, . . . , 1), then (k1, . . . , kn) ∈ Zn

implies that kn+1 is an integer. The conclusion follows from the definition
of L′.
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Definition 2. We call φτ (λ; x) the dehomogenization of φ̃τ (λ̃; x̃).

Intuitively speaking, the dehomogenization is defined by “forgetting” the
last variable xn+1 associated Γ factors. See Example 1.

Formal series solutions for the hypergeometric system for inhomogeneous
A do not converge in general. However, we can construct vol(A) convergent
series solutions as the dehomogenization of a set of series solutions for Ã
hypergeometric system associated to a regular triangulation on Ã induced
by a “nice” weight vector w̃(ε), which we will define. Put w̃ = (1, . . . , 1, 0) ∈
Rn+1. Since the Gröbner fan for the toric variety IÃ is a polyhedral fan,
the following fact holds.

Lemma 2. For any ε > 0, there exists ṽ ∈ Rn+1 such that w̃(ε) := w̃ + εṽ
lies in the interior of a maximal dimensional Gröbner cone of IÃ. We may
also suppose ṽn+1 = 0.

Proof. Let us prove the lemma. The first part is a consequence of an ele-
mentary property of the fan. When I is a homogeneous ideal in the ring of
polynomials of n + 1 variables, we have

inũ(I) = inũ+t(1,··· ,1)(I) (3.3)

for any t and any weight vector ũ. In other words, ũ and ũ + t(1, . . . , 1) lie
in the interior of the same Gröbner cone.

When the weight vector w̃(ε) = w̃+εṽ lies in the interior of the Gröbner
cone, we define a new ṽ by ṽ − ṽn+1(1, . . . , 1). Since the initial ideal does
not change with this change of weight, we may assume that ṽn+1 = 0 for
the new ṽ.

Since the Gröbner fan is a refinement of the secondary fan and hence
w̃(ε) is an interior point of a maximal dimensional secondary cone, it induces
a regular triangulation ([12] p.71, Proposition 8.15). We denote by ∆ the
regular triangulation on Ã induced by w̃(ε). For a d-simplex τ ∈ ∆, we
define b(i) as in the proof of the homogeneous case. Since the weight for
ãn+1 is the lowest, n + 1 ∈ τ holds. We can change indices of ã1, . . . , ãn so
that τ = {n− d + 1, . . . , n + 1} without loss of generality.

Let us prove that the dehomogenized series φτ (λ; x) converge. It follows
from a characterization of the support of the series [11, Theorem 3.4.2] that
we have

w̃(ε) ·
(

n−d∑

i=1

k′ib
(i) + λ

)
≥ w̃(ε) · λ, ∀k′ ∈ L′ ∩ S.
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Here, S is a set such that Z≤0 does not appear in the denominator of the Γ
factors. Take the limit ε → 0 and we have

w̃ ·
n−d∑

i=1

k′ib
(i) ≥ 0, ∀k′ ∈ L′ ∩ S.

From Lemma 2, w̃(ε) ∈ C(Ã, τ) holds and then

w̃(ε) · b(i) ≥ 0.

Similarly, by taking the limit ε → 0, we have

w̃ · b(i) =
n∑

j=1

bij ≥ 0.

Therefore, we have
∑n+1

j=1 bij = 0, the inequality bi,n+1 ≤ 0 holds for all i.
Since k′1 ≥ −λ1, . . . , k

′
n−d ≥ −λn−d, we have

n−d∑

i=1

k′ibi,n+1 ≤ −
n−d∑

i=1

λibi,n+1

Note that the right hand side is a non-negative number. Suppose that λn+1

is negative. In terms of the Pochhammer symbol we have Γ(λn+1 −m) =
Γ(λn+1)(−λn+1+1; m)−1(−1)m, then we can estimate the (n+1)-th gamma
factors as
∣∣∣∣∣Γ(λn+1 +

n−d∑

i=1

k′ibi,n+1 + 1)

∣∣∣∣∣ = |Γ(λn+1 + 1)| ·
∣∣∣∣∣

(
−λn+1;−

n−d∑

i=1

k′ibi,n+1

)∣∣∣∣∣

−1

≤ c′|Γ(λn+1 + 1)| ·
∣∣∣∣∣

(
−λn+1;−

n−d∑

i=1

λibi,n+1

)∣∣∣∣∣

−1

= c (3.4)

Here, c′ and c are suitable constants.
When λn+1 ≥ 0, there exists only finite set of values such that λn+1 +∑n−d

i=1 k′ibi,n+1 ≥ 0. Then, we can show the inequality (3.4) in an analogous
way.

Now, by (3.4), we have
∣∣∣∣∣

1∏n
j=1 Γ(λj +

∑n−d
i=1 k′ibij + 1)

∣∣∣∣∣ ≤ c

∣∣∣∣∣
1

Γ(λ +
∑n−d

i=1 k′ib(i) + 1)

∣∣∣∣∣
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We note that the right hand side is the coefficient of the series solution for the
homogeneous system for Ã and the series converge for (− log |x1|, . . . ,− log |xn+1|) ∈
C(Ã, τ, r) (r < 1) uniformly with respect to s̃ in an open set.

Put xn+1 = 1. Since − log |xn+1| = 0 and w̃(ε) ∈ {y | yn+1 = 0}, we can
see that ⋂

τ∈∆

C(Ã, τ, r) ∩ {y | yn+1 = 0}

is a non-empty open set of Rn. Therefore the dehomogenized series φτ (λ; x)
converge in an open set in the (s, x) space.

Theorem 2. The dehomogenized series φτ (λ; x) satisfies the hypergeometric
differential-difference system HA and they are linearly independent conver-
gent solutions of HA when λ runs over admissible exponents associated to
the initial system induced by the weight vector w̃(ε).

Proof. Since Aλ = s, it is easy to show that they are formal solutions of
the differential-difference system HA. We will prove that we can construct
m linearly independent solutions. We note that the weight vector w̃(ε) =
(1, . . . , 1, 0) + εv ∈ Rn+1 is in the neighborhood of (1, . . . , 1, 0) ∈ Rn+1 and
in the interior of a maximal dimensional Gröbner cone of IÃ.

It follows from [11, p.119] that the minimal generating set of in(1,...,1,0) IÃ
does not contain ∂n+1. Since

inw̃(ε) IÃ = inv(in(1,...,1,0) IÃ)

does not contain ∂n+1, we have

M = 〈inw̃(ε) IÃ〉 = 〈inw(ε) IA〉 in C[∂1, . . . , ∂n+1].

Here, we define w(ε) with w̃(ε) = (w(ε), 0). Put θ̃ = (θ1, . . . , θn+1). From
[11, Theorem 3.1.3], for generic β̃ = (β0, β), β ∈ Cd, the initial ideal
in(−w̃(ε),w̃(ε)) HÃ(β̃) is generated by inw̃(ε)(IÃ) and Ãθ̃− β̃. Let us denote by
T (M) the standard pairs of M . From [11, Theorem 3.2.10], the initial ideal

〈inw̃(ε) IÃ, Ãθ̃ − β̃〉 (3.5)

has #T (M) = vol(Ã) linearly independent solutions of the form

{x̃λ̃ | (∂a, T ) ∈ T (M)}

Here, λ̃ is defined by λ̃i = ai ∈ Z≥0, ∀i 6∈ T and Ãλ̃ = β̃. Note that λ̃ is
admissible for the d-simplex T .

10



Since we have
〈inw̃(ε) IÃ〉 = 〈inw(ε) IA〉

the difference between
〈inw(ε) IA, Aθ − β〉 (3.6)

and (3.5) is only
θ1 + · · ·+ θn + θn+1 − β0

and other equations do not contain xn+1, ∂n+1.
For any (∂a, T ) ∈ T (M), we have n+1 ∈ T . Therefore, the two solution

spaces (3.6) and (3.5) are isomorphic under the correspondence

xλ 7→ x̃λ̃ (3.7)

Here, we put λ̃ = (λ, λn+1) and λn+1 is defined by

n∑

i=1

λi + λn+1 − β0 = 0

It follows from [11, Theorem 2.3.11 and Theorem 3.2.10] that

{x̃λ̃ | (∂a, T ) ∈ T (M)}

are C-linearly independent. Therefore, from the correspondence (3.7), the
functions

{xλ | (∂a, T ) ∈ T (M)},
of which cardinality is vol(A), are C-linearly independent. Hence, series
solutions with the initial terms

{
xλ

Γ(λ + 1)
| (∂a, T ) ∈ T (M)

}

are C linearly independent, which implies the linear independence of series
solutions with these starting terms [11]. We have completed the proof of the
theorem and also that of Theorem 1.

Theorem 3. The holonomic rank of HA is equal to the normalized volume
of A.
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Proof. First we will prove rank(HA) ≤ vol(A). It follows from the Adolph-
son’s theorem ([1]) that the holonomic rank of A-hypergeometric system
HA(β) is equal to the normalized volume of A for generic parameters β. It
implies that the standard monomials for a Gröbner basis of theA-hypergeometric
system HA(s) in C(s, x)〈∂1, . . . , ∂n〉 consists of vol(A) elements. We note
that elements in the Gröbner basis can be regarded as an element in the ring
of differential-difference operators with rational function coefficients U. We
denote by ∂j and rj the creation and annihilation operators. The existence
of them are proved in [10, Chapter 4]. Then, we have

Hj = ∂j −
n∏

i=1

S
−aij

i ∈ HA

and

Bj = rj −
n∏

i=1

S
aij

i ∈ HA, rj ∈ C(s, x)〈∂1, . . . , ∂n〉.

Since the column vectors of A generate the lattice Zd, we obtain from Bj ’s
and Hj ’s elements of the form Si − p(s, x, ∂), S−1

i − q(s, x, ∂) ∈ HA. It
implies the number of standard monomials of a Gröbner basis of HA with
respect to a block order such that S1, . . . , Sn > S−1

1 , . . . , S−1
n > ∂1, . . . , ∂n is

less than or equal to vol(A).
Second, we will prove rank(HA) ≥ vol(A). We suppose that rank(HA) <

vol(A) and will induce a contradiction. For the block order S1, · · · , Sd >
S−1

1 , · · · , S−1
d > ∂1, · · · , ∂n, we can show that the standard monomials T of a

Gröbner basis of HA in U contains only differential terms and #T < vol(A)
by the assumption. Let T ′ be the standard monomials of Gröbner basis G(s)
of HA(s) in the ring of differential operators with rational function coeffi-
cients D(s). Note that #T ′ = vol(A). Then T is a proper subset of the set
T ′. For r ∈ T ′ \ T , it follows that

∂r ≡
∑

α∈T

cα(x, s)∂α mod HA.

From Theorem 2, we have convergent series solutions f1(s, x), · · · , fm(s, x)
of HA, where m = vol(A). So,

∂r • fi =
∑

α∈T

cα(x, s)∂α • fi (3.8)

Since f1(s, x), . . . , fm(s, x) are linearly independent, the Wronskian standing
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for T ′

W (T ′; f)(x, s) =

∣∣∣∣∣∣∣

f1(s; x) · · · fm(β;x)
∂δf1(s; x) · · · ∂δfm(β;x)

... · · · ...

∣∣∣∣∣∣∣
(∂δ ∈ T ′ \ {1})

is non-zero for generic number s. However r ∈ T ′ and (3.8) induce the
Wronskian W (T ′; f)(s, x) is equal to zero.

Finally, by rank(HA) ≤ vol(A) and rank(HA) ≥ vol(A), the theorem is
proved.

Example 1. Put A =
(
1 2 3

)
and Ã =

(
1 1 1 1
1 2 3 0

)
. This is Airy type

integral [11, p.223].
The matrix Ã is homogeneous. For w̃(ε) = (1, 1, 1, 0) + 1

100(1, 0, 0, 0),
the initial ideal inw̃(ε)(IÃ) is generated by ∂2

1 , ∂1∂2, ∂1∂3, ∂
3
2 . Note that the

initial ideal does not contain ∂4. We solve the initial system
(
Ãθ̃ − s̃

)
•

g = 0,
(
inw̃(ε)(IÃ)

) • g = 0. The standard pairs (∂a, T ) for inw̃(ε)(IÃ) are
(∂0

1∂1
2 , {3, 4}), (∂0

1∂0
2 , {3, 4}), (∂0

1∂2
2 , {3, 4}). Hence, the solutions for the ini-

tial system are
x0

1x
1
2x

(s1−2)/3
3 x

s0−1−(s1−2)/3
4 , x0

1x
0
2x

s1/3
3 x

a0−s1/3
4 , x0

1x
2
2x

(s1−4)/3
3 x

s0−2−(s1−4)/3
4

([11]). Therefore, the A-hypergeometric differential-difference system HÃ
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has the following series solutions.

φ̃1(λ̃, x̃) = xs0
4

(
x2

x4

)(
x3

x4

) s1−2
3

·
∑

k1≥0, k2≥−1
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!(k2 + 1)!Γ( s1−k1−2k2+1
3 )Γ(3s0−s1−2k1−k2+2

3 )

φ̃2(λ̃, x̃) = xs0
4

(
x3

x4

) s1
3

·
∑

k1≥0, k2≥0
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!k2!Γ( s1−k1−2k2+3
3 )Γ(3s0−s1−2k1−k2+3

3 )

φ̃3(λ̃, x̃) = xs0
4

(
x2

x4

)2 (
x3

x4

) s1−4
3

·
∑

k1≥0, k2≥−2
(k1,k2)∈L′

(
x1x

−1/3
3 x

−2/3
4

)k1
(
x2x

−2/3
3 x

−1/3
4

)k2

k1!(k2 + 2)!Γ( s1−k1−2k2−1
3 )Γ(3s0−s1−2k1−k2+1

3 )

Here,

L′ = {(k1, k2) | k1 ≡ 0 mod 3, k2 ≡ 0 mod 3}∪{(k1, k2) | k1 ≡ 1 mod 3, k2 ≡ 1 mod 3}.
The matrix A is not homogeneous and by dehomogenizing the series solu-
tion for Ã we obtain the following series solutions for the A-hypergeometric
differential-difference system HA.

φ1(λ, x) = x2x
s1−2

3
3

∑

k1≥0, k2≥−1
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!(k2 + 1)!Γ( s1−k1−2k2+1
3 )

φ2(λ, x) = x
s1
3

3

∑

k1≥0, k2≥0
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!k2!Γ( s1−k1−2k2+3
3 )

φ3(λ, x) = x2
2x

s1−4
3

3

∑

k1≥0, k2≥−2
(k1,k2)∈L′

(
x1x

−1/3
3

)k1
(
x2x

−2/3
3

)k2

k1!(k2 + 2)!Γ( s1−k1−2k2−1
3 )
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Here φk(x) is the dehomogenization of φ̃k(x).
Finally, let us present a difference Pfaffian system for A. It can be derived

by using Gröbner bases of HA and has the following form:

S1




f
x3∂3 • f
S1 • f


 =




0 0 1
− s1x1

6x2

3x1x3−4x2
2

6x2x3

2(s1−1)x2+x2
1

6x2
s1
2x2

− 3
2x2

− x1
2x2







f
x3∂3 • f
S1 • f


 .
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