Holonomic rank of \mathcal{A}-hypergeometric differential-difference equations

Katsuyoshi Ohara*and Nobuki Takayama ${ }^{\dagger}$

June 18, 2007

Abstract

We introduce \mathcal{A}-hypergeometric differential-difference equation \boldsymbol{H}_{A} and prove that its holonomic rank is equal to the normalized volume of \mathcal{A} with giving a set of convergent series solutions.

1 Introduction

In this paper, we introduce \mathcal{A}-hypergeometric differential-difference equation \boldsymbol{H}_{A} and study its series solutions and holonomic rank.

Let $A=\left(a_{i j}\right)_{i=1, \ldots, d, j=1, \ldots, n}$ be a $d \times n$-matrix whose elements are integers. We suppose that the set of the column vectors of A spans \mathbf{Z}^{d} and there is no zero column vector. Let a_{i} be the i-th column vector of the matrix A and $F(\beta, x)$ the integral

$$
F(\beta, x)=\int_{C} \exp \left(\sum_{i=1}^{n} x_{i} t^{a_{i}}\right) t^{-\beta-1} d t, \quad t=\left(t_{1}, \ldots, t_{d}\right), \beta=\left(\beta_{1}, \ldots, \beta_{d}\right) .
$$

The integral $F(\beta, x)$ satisfies the \mathcal{A}-hypergeometric differential system associated to A and β "formally". We use the word "formally" because, there is no general and rigorous description about the cycle C ([11, p.222]).

We will regard the parameters β as variables. Then, the function $F(s, x)$ on the (s, x) space satisfies differential-difference equations "formally", which will be our \mathcal{A}-hypergeometric differential-difference system.

Rank theories of \mathcal{A}-hypergeometric differential system have been developed since Gel'fand, Zelevinsky and Kapranov [4]. In the end of 1980's,

[^0]under the condition that the points lie on a same hyperplane, they proved that the rank of \mathcal{A}-hypergeometric differential system $H_{A}(\beta)$ agrees with the normalized volume of A for any parameter $\beta \in \mathbf{C}^{d}$ if the toric ideal I_{A} has the Cohen-Macaulay property. After their result had been gotten, many people have studied on conditions such that the rank equals the normalized volume. In particular, Matusevich, Miller and Walther proved that I_{A} has the Cohen-Macaulay property if the rank of $H_{A}(\beta)$ agrees with the normalized volume of A for any $\beta \in \mathbf{C}^{d}([5])$.

In this paper, we will introduce \mathcal{A}-hypergeometric differential-difference system, which can be regarded as a generalization of difference equation for the Γ-function, the Beta function, and the Gauss hypergeometric difference equations. As the first step on this differential-difference system, we will prove our main Theorem 3 utilizing theorems on \mathcal{A}-hypergeometric differential equations, construction of convergent series solutions with a homogenization technique, uniform convergence of series solutions, and Mutsumi Saito's results for contiguity relations [9], [10], [11, Chapter 4]. The existence theorem 2 on convergent series fundamental set of solutions for \mathcal{A}-hypergeometric differential equation for generic β is the second main theorem of our paper. Finally, we note that, for studying our \mathcal{A}-hypergeometric differential-difference system, we wrote a program "yang" ([6], [8]) on a computer algebra system Risa/Asir and did several experiments on computers to conjecture and prove our theorems.

2 Holonomic rank

Let \boldsymbol{D} be the ring of differential-difference operators

$$
\mathbf{C}\left\langle x_{1}, \ldots, x_{n}, s_{1}, \ldots, s_{d}, \partial_{1}, \ldots, \partial_{n}, S_{1}, \ldots, S_{d}, S_{1}^{-1}, \ldots, S_{d}^{-1}\right\rangle
$$

where the following (non-commutative) product rules are assumed

$$
S_{i} s_{i}=\left(s_{i}+1\right) S_{i}, \quad S_{i}^{-1} s_{i}=\left(s_{i}-1\right) S_{i}^{-1}, \quad \partial_{i} x_{i}=x_{i} \partial_{i}+1
$$

and the other types of the product of two generators commute.
Holonomic rank of a system of differential-difference equations will be defined by using the following ring of differential-difference operators with rational function coefficients

$$
\mathbf{U}=\mathbf{C}\left(s_{1}, \ldots, s_{d}, x_{1}, \ldots, x_{n}\right)\left\langle S_{1}, \ldots, S_{d}, S_{1}^{-1}, \ldots, S_{d}^{-1}, \partial_{1}, \ldots, \partial_{n}\right\rangle
$$

It is a \mathbf{C}-algebra generated by rational functions in $s_{1}, \ldots, s_{d}, x_{1}, \ldots, x_{n}$ and differential operators $\partial_{1}, \ldots, \partial_{n}$ and difference operators $S_{1}, \ldots, S_{d}, S_{1}^{-1}, \ldots, S_{d}^{-1}$.

The commutation relations are defined by $\partial_{i} c(s, x)=c(s, x) \partial_{i}+\frac{\partial c}{\partial x_{i}}, S_{i} c(s, x)=$ $c\left(s_{1}, \ldots, s_{i}+1, \ldots, s_{d}, x\right) S_{i}, S_{i}^{-1} c(s, x)=c\left(s_{1}, \ldots, s_{i}-1, \ldots, s_{d}, x\right) S_{i}^{-1}$.

Let I be a left ideal in \boldsymbol{D}. The holonomic rank of I is the number

$$
\operatorname{rank}(I)=\operatorname{dim}_{\mathbf{C}(s, x)} \mathbf{U} /(\mathbf{U} I) .
$$

In case of the ring of differential operators $(d=0)$, the definition of the holonomic rank agrees with the standard definition of holonomic rank in the ring of differential operators.

For a given left ideal I, the holonomic rank can be evaluated by a Gröbner basis computation in \mathbf{U}.

$3 \mathcal{A}$-hypergeometric differential-difference equations

Let $A=\left(a_{i j}\right)_{i=1, \ldots, d, j=1, \ldots, n}$ be an integer $d \times n$ matrix of rank d. We assume that the column vectors $\left\{a_{i}\right\}$ of A generates \mathbf{Z}^{d} and there is no zero vector. The \mathcal{A}-hypergeometric differential-difference system \boldsymbol{H}_{A} is the following system of differential-difference equations

$$
\begin{array}{cc}
\left(\sum_{j=1}^{n} a_{i j} x_{j} \partial_{j}-s_{i}\right) \bullet f=0 & \text { for } i=1, \ldots, d \quad \text { and } \\
\left(\partial_{j}-\prod_{i=1}^{n} S_{i}^{-a_{i j}}\right) \bullet f=0 & \text { for } j=1, \ldots, n .
\end{array}
$$

Note that \boldsymbol{H}_{A} contains the toric ideal I_{A}. (use [12, Algorithm 4.5] to prove it.)

Definition 1. Define the unit volume in \mathbf{R}^{d} as the volume of the unit simplex $\left\{0, e_{1}, \ldots, e_{d}\right\}$. For a given set of points $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ in \mathbf{R}^{d}, the normalized volume $\operatorname{vol}(\mathcal{A})$ is the volume of the convex hull of the origin and \mathcal{A}.

Theorem 1. \mathcal{A}-hypergeometric differential-difference system \boldsymbol{H}_{A} has linearly independent $\operatorname{vol}(A)$ series solutions.

The proof of this theorem is divided into two parts. The matrix A is called homogeneous when it contains a row of the form $(1, \ldots, 1)$. If A is homogeneous, then the associated toric ideal I_{A} is homogeneous ideal [12]. The first part is the case that A is homogeneous. The second part is the case that A is not homogeneous.

Proof. (A is homogeneous.) We will prove the theorem with the homogeneity assumption of A. In other words, we suppose that A is written as follows:

$$
A=\left(\begin{array}{ccc}
1 & \cdots & 1 \\
& * &
\end{array}\right)
$$

Gel'fand, Kapranov, Zelevinski gave a method to construct $m=\operatorname{vol}(A)$ linearly independent solutions of $H_{A}(\beta)$ with the homogeneity condition of $A([4])$. They suppose that β is fixed as a generic \mathbf{C}-vector. Let us denote their series solutions by $f_{1}(\beta ; x), \ldots, f_{m}(\beta ; x)$. It is easy to see that the functions $f_{i}(s ; x)$ are solutions of the differential-difference equations \boldsymbol{H}_{A}. We can show, by carefully checking the estimates of their convergence proof, that there exists an open set in the (s, x) space such that $f_{i}(s ; x)$ is locally uniformly convergent with respect to s and x. Let us sketch their proof to see that their series converge as solutions of \boldsymbol{H}_{A}. The discussion is given in [4], but we need to rediscuss it in a suitable form to apply it to the case of inhomogeneous A.

Let B be a matrix of which the set of column vectors is a basis of $\operatorname{Ker}(A$: $\mathbf{Q}^{n} \rightarrow \mathbf{Q}^{d}$) and is normalized as follows:

$$
B=\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
& * &
\end{array}\right) \in M(n, n-d, \mathbf{Q})
$$

We denote by $b^{(i)}$ the i-th column vector of B and by $b_{i j}$ the j-th element of $b^{(i)}$. Then the homogeneity of A implies

$$
\sum_{j=1}^{n} b_{i j}=0
$$

Let us fix a regular triangulation Δ of $\mathcal{A}=\left\{a_{1}, \ldots, a_{n}\right\}$ following the construction by Gel'fand, Kapranov, Zelevinsky. Take a d-simplex τ in the triangulation Δ. If $\lambda \in \mathbf{C}^{n}$ is admissible for a d-simplex τ of $\{1,2, \ldots, n\}$ (admissible \Leftrightarrow for all $j \notin \tau, \lambda_{j} \in \mathbf{Z}$), and $A \lambda=s$ holds, then \boldsymbol{H}_{A} has a formal series solution

$$
\phi_{\tau}(\lambda ; x)=\sum_{l \in L} \frac{x^{\lambda+l}}{\Gamma(\lambda+l+1)}
$$

where $L=\operatorname{Ker}\left(A: \mathbf{Z}^{n} \rightarrow \mathbf{Z}^{d}\right)$ and $\Gamma(\lambda+l+1)=\prod_{i=1}^{n} \Gamma\left(\lambda_{i}+l_{i}+1\right)$ and when a factor of the denominator of a term in the sum, we regard the term
is zero. Put $\# \tau=n^{\prime}$. Note that there exists an open set U in the s space such that $\lambda_{i}, i \in \tau$ lie in a compact set in $\mathbf{C}^{n^{\prime}} \backslash \mathbf{Z}^{n^{\prime}}$. Moreover, this open set U can be taken as a common open set for all d-simplices in the triangulation Δ and the associated admissible λ 's when the integral values $\lambda_{j}(j \notin \tau)$ are fixed for all $\tau \in \Delta$.

Put $L^{\prime}=\left\{\left(k_{1}, \ldots, k_{n-d}\right) \in \mathbf{Z}^{n-d} \mid \sum_{i=1}^{n-d} k_{i} b^{(i)} \in \mathbf{Z}^{n}\right\}$. Then, L^{\prime} is \mathbf{Z} submodule of \mathbf{Z}^{n-d} and $L=\left\{\sum_{i=1}^{n-d} k_{i} b^{(i)} \mid k \in L^{\prime}\right\}$. In other words, L can be parametrized with L^{\prime}. Without loss of the generality, we may suppose that $\tau=\{n-d+1, \ldots, n\}$. Then, we have

$$
\phi_{\tau}(\lambda ; x)=\sum_{l \in L} \frac{x^{\lambda+l}}{\Gamma(\lambda+l+1)}=\sum_{k \in L^{\prime}} \frac{x^{\lambda+\sum_{i=1}^{n-d} k_{i} b^{(i)}}}{\Gamma\left(\lambda+\sum_{i=1}^{n-d} k_{i} b^{(i)}+1\right)}
$$

Note that the first $n-d$ rows of B are normalized. Then, we have

$$
\lambda_{j}+\sum_{i=1}^{n-d} k_{i} b_{i j}+1=\lambda_{j}+k_{j}+1 \in \mathbf{Z} \quad(j=1, \ldots, n-d)
$$

Since $1 / \Gamma(0)=1 / \Gamma(-1)=1 / \Gamma(-2)=\cdots=0$, the sum can be written as

$$
\phi_{\tau}(\lambda ; x)=\sum_{\substack{k \in L^{\prime} \\ \lambda_{j}+k_{j}+1 \in \mathbf{Z}_{>0} \\(j=1, \ldots, n-d)}} \frac{x^{\lambda+\sum_{i=1}^{n-d} k_{i} b^{(i)}}}{\Gamma\left(\lambda+\sum_{i=1}^{n-d} k_{i} b^{(i)}+1\right)}
$$

Moreover, when we put

$$
\begin{aligned}
k_{j}^{\prime} & =\lambda_{j}+k_{j}, \quad(j=1, \ldots, n-d) \\
\lambda^{\prime} & =\lambda-\sum_{i=1}^{n-d} \lambda_{i} b^{(i)} \\
\hat{\lambda} & =\left(\lambda_{1}, \ldots, \lambda_{n-d}\right)
\end{aligned}
$$

we have

$$
\sum_{i=1}^{n-d} k_{i} b^{(i)}=-\sum_{i=1}^{n-d} \lambda_{i} b^{(i)}+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}
$$

Hence, the $\operatorname{sum} \phi_{\tau}(\lambda ; x)$ can be written as

$$
\begin{aligned}
\phi_{\tau}(\lambda ; x) & =\sum_{\substack{k^{\prime} \in L^{\prime}+\hat{\lambda} \\
k^{\prime} \in \mathbf{Z}_{\geq 0}^{n-d}}} \frac{x^{\lambda-\sum_{i=1}^{n-d} \lambda_{i} b^{(i)}} \cdot x^{\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}}}{\Gamma\left(\lambda-\sum_{i=1}^{n-d} \lambda_{i} b^{(i)}+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+1\right)} \\
& =x^{\lambda^{\prime}} \sum_{\substack{k^{\prime} \in L^{\prime}+\hat{\lambda} \\
k^{\prime} \in \mathbf{Z}_{\geq 0}^{n-d}}} \frac{\left(x^{b^{(1)}}\right)^{k_{1}^{\prime}} \cdots\left(x^{b^{(n-d)}}\right)^{k_{n-d}^{\prime}}}{\Gamma\left(\lambda^{\prime}+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+1\right)}
\end{aligned}
$$

Note that our series with the coefficients in terms of Gamma functions agree with those in [11, §3.4], which do not contain Gamma functions, by multiplying suitable constants. Hence we will apply some results on series solutions in [11] to our discussions in the sequel.

Lemma 1. Let $\left(k_{i}\right) \in\left(\mathbf{Z}_{\geq 0}\right)^{m}$ and $\left(b_{i j}\right) \in M(m, n, \mathbf{Q})$. Suppose that

$$
\sum_{i=1}^{m} k_{i} b_{i j} \in \mathbf{Z}, \quad \sum_{j=1}^{n} b_{i j}=0
$$

and parameters $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ belongs to a compact set K. Then there exists a positive number r, which is independent of λ, such that the power series

$$
\sum_{\substack{k^{\prime} \in L^{\prime}+\hat{\lambda} \\ k^{\prime} \in \mathbf{Z}_{\geq 0}^{n-d}}} \frac{\left(x^{b^{(1)}}\right)^{k_{1}^{\prime}} \cdots\left(x^{b^{(n-d)}}\right)^{k_{n-d}^{\prime}}}{\Gamma\left(\lambda^{\prime}+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+1\right)}
$$

is convergent in $\left|x^{b^{(1)}}\right|, \cdots,\left|x^{b^{(n-d)}}\right|<r$.
The proof of this lemma can be done by elementary estimates of Γ functions. See [7, pp.18-21] if readers are interested in the details. Since

$$
k^{\prime} \in L^{\prime}+\hat{\lambda} \Longleftrightarrow \sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)} \in \mathbf{Z}^{n}
$$

it follows from Lemma 1 that there exists a positive constant r such that the series converge in

$$
\begin{equation*}
\left|x^{b^{(1)}}\right|, \cdots,\left|x^{b^{(n-d)}}\right|<r \tag{3.1}
\end{equation*}
$$

for any s in the open set U. We may suppose $r<1$. Take the \log of (3.1). Then we have

$$
\begin{equation*}
b^{(k)} \cdot\left(\log \left|x_{1}\right|, \ldots, \log \left|x_{n}\right|\right)<\log |r|<0 \quad \forall k \in\{1, \ldots, n-d\} \tag{3.2}
\end{equation*}
$$

Following [4], for the simplex τ and r, we define the set $C(A, \tau, r)$ as follows.

$$
C(A, \tau, r)=\left\{\psi \in \mathbf{R}^{n} \mid \exists \varphi \in \mathbf{R}^{d}, \quad \psi_{i}-\left(\varphi, a_{i}\right)\left\{\begin{array}{ll}
>-\log |r|, & i \notin \tau \\
=0, & i \in \tau
\end{array}\right\}\right.
$$

The condition (3.2) and $\left(-\log \left|x_{1}\right|, \ldots,-\log \left|x_{n}\right|\right) \in C(A, \tau, r)$ is equivalent (see [3, section 4] as to the proof).

Since Δ is a regular triangulation of $A, \bigcap_{\tau \in \Delta} C(A, \tau, r)$ is an open set. Therefore, when s lies in the open set U and $-\log |x|$ lies in the above open set, the $\operatorname{vol}(A)$ linearly independent solutions converge.

Let us proceed on the proof for the inhomogeneous case. We suppose that A is not homogeneous and has only non-zero column vectors. We define the homogenized matrix as

$$
\tilde{A}=\left(\begin{array}{cccc}
1 & \cdots & 1 & 1 \\
a_{11} & \cdots & a_{1 n} & 0 \\
\vdots & & \vdots & \vdots \\
a_{d 1} & \cdots & a_{d n} & 0
\end{array}\right) \in M(d+1, n+1, \mathbf{Z})
$$

For $s=\left(s_{1}, \ldots, s_{n}\right) \in \mathbf{C}^{d}$ and a generic complex number s_{0}, we put $\tilde{s}=$ $\left(s_{0}, s_{1}, \ldots, s_{d}\right)$. We suppose that $\tau=\{n-d+1, \ldots, d, d+1\}$ is a $(d+1)$ simplex. Let us take an admissible λ for τ such that $\tilde{A} \tilde{\lambda}=\tilde{s}$ and $\tilde{\lambda}=$ $\left(\lambda_{1}, \ldots, \lambda_{n+1}\right) \in \mathbf{R}^{n+1}$ as in the proof of the homogeneous case. Put $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. Consider the solution of the hypergeometric system for \tilde{A}

$$
\tilde{\phi}_{\tau}(\tilde{\lambda} ; \tilde{x})=\sum_{k^{\prime} \in L^{\prime} \cap S} \frac{\tilde{x}^{\lambda+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}}}{\Gamma\left(\lambda+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+1\right)}
$$

and the series

$$
\phi_{\tau}(\lambda ; x)=\sum_{k^{\prime} \in L^{\prime} \cap S} \frac{\prod_{j=1}^{n} x_{j}^{\lambda+\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i j}}}{\prod_{j=1}^{n} \Gamma\left(\lambda_{j}+\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i j}+1\right)}
$$

$\left(\tilde{x}=\left(x_{1}, \ldots, x_{n+1}\right), x=\left(x_{1}, \ldots, x_{n}\right)\right)$. Here, the set S is a subset of L^{\prime} such that an integer in $\mathbf{Z}_{\leq 0}$ does not appear in the arguments of the Gamma functions in the denominator. We note that L^{\prime} for \tilde{A} and L^{\prime} for A agree, which can be proved as follows. Let $\left(k_{1}, \ldots, k_{n+1}\right)$ be in the kernel of \tilde{A} in \mathbf{Q}^{n+1}. Since \tilde{A} contains the row of the form $(1, \ldots, 1)$, then $\left(k_{1}, \ldots, k_{n}\right) \in \mathbf{Z}^{n}$ implies that k_{n+1} is an integer. The conclusion follows from the definition of L^{\prime}.

Definition 2. We call $\phi_{\tau}(\lambda ; x)$ the dehomogenization of $\tilde{\phi}_{\tau}(\tilde{\lambda} ; \tilde{x})$.
Intuitively speaking, the dehomogenization is defined by "forgetting" the last variable x_{n+1} associated Γ factors. See Example 1.

Formal series solutions for the hypergeometric system for inhomogeneous A do not converge in general. However, we can construct $\operatorname{vol}(A)$ convergent series solutions as the dehomogenization of a set of series solutions for \tilde{A} hypergeometric system associated to a regular triangulation on $\tilde{\mathcal{A}}$ induced by a "nice" weight vector $\tilde{w}(\varepsilon)$, which we will define. Put $\tilde{w}=(1, \ldots, 1,0) \in$ \mathbf{R}^{n+1}. Since the Gröbner fan for the toric variety $I_{\tilde{A}}$ is a polyhedral fan, the following fact holds.

Lemma 2. For any $\varepsilon>0$, there exists $\tilde{v} \in \mathbf{R}^{n+1}$ such that $\tilde{w}(\varepsilon):=\tilde{w}+\varepsilon \tilde{v}$ lies in the interior of a maximal dimensional Gröbner cone of $I_{\tilde{A}}$. We may also suppose $\tilde{v}_{n+1}=0$.

Proof. Let us prove the lemma. The first part is a consequence of an elementary property of the fan. When I is a homogeneous ideal in the ring of polynomials of $n+1$ variables, we have

$$
\begin{equation*}
\operatorname{in}_{\tilde{u}}(I)=\operatorname{in}_{\tilde{u}+t(1, \cdots, 1)}(I) \tag{3.3}
\end{equation*}
$$

for any t and any weight vector \tilde{u}. In other words, \tilde{u} and $\tilde{u}+t(1, \ldots, 1)$ lie in the interior of the same Gröbner cone.

When the weight vector $\tilde{w}(\varepsilon)=\tilde{w}+\varepsilon \tilde{v}$ lies in the interior of the Gröbner cone, we define a new \tilde{v} by $\tilde{v}-\tilde{v}_{n+1}(1, \ldots, 1)$. Since the initial ideal does not change with this change of weight, we may assume that $\tilde{v}_{n+1}=0$ for the new \tilde{v}.

Since the Gröbner fan is a refinement of the secondary fan and hence $\tilde{w}(\varepsilon)$ is an interior point of a maximal dimensional secondary cone, it induces a regular triangulation ([12] p.71, Proposition 8.15). We denote by Δ the regular triangulation on \tilde{A} induced by $\tilde{w}(\varepsilon)$. For a d-simplex $\tau \in \Delta$, we define $b^{(i)}$ as in the proof of the homogeneous case. Since the weight for \tilde{a}_{n+1} is the lowest, $n+1 \in \tau$ holds. We can change indices of $\tilde{a}_{1}, \ldots, \tilde{a}_{n}$ so that $\tau=\{n-d+1, \ldots, n+1\}$ without loss of generality.

Let us prove that the dehomogenized series $\phi_{\tau}(\lambda ; x)$ converge. It follows from a characterization of the support of the series [11, Theorem 3.4.2] that we have

$$
\tilde{w}(\varepsilon) \cdot\left(\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+\lambda\right) \geq \tilde{w}(\varepsilon) \cdot \lambda, \quad \forall k^{\prime} \in L^{\prime} \cap S
$$

Here, S is a set such that $\mathbf{Z}_{\leq 0}$ does not appear in the denominator of the Γ factors. Take the limit $\varepsilon \rightarrow 0$ and we have

$$
\tilde{w} \cdot \sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)} \geq 0, \quad \forall k^{\prime} \in L^{\prime} \cap S
$$

From Lemma 2, $\tilde{w}(\varepsilon) \in C(\tilde{A}, \tau)$ holds and then

$$
\tilde{w}(\varepsilon) \cdot b^{(i)} \geq 0 .
$$

Similarly, by taking the limit $\varepsilon \rightarrow 0$, we have

$$
\tilde{w} \cdot b^{(i)}=\sum_{j=1}^{n} b_{i j} \geq 0 .
$$

Therefore, we have $\sum_{j=1}^{n+1} b_{i j}=0$, the inequality $b_{i, n+1} \leq 0$ holds for all i.
Since $k_{1}^{\prime} \geq-\lambda_{1}, \ldots, k_{n-d}^{\prime} \geq-\lambda_{n-d}$, we have

$$
\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i, n+1} \leq-\sum_{i=1}^{n-d} \lambda_{i} b_{i, n+1}
$$

Note that the right hand side is a non-negative number. Suppose that λ_{n+1} is negative. In terms of the Pochhammer symbol we have $\Gamma\left(\lambda_{n+1}-m\right)=$ $\Gamma\left(\lambda_{n+1}\right)\left(-\lambda_{n+1}+1 ; m\right)^{-1}(-1)^{m}$, then we can estimate the ($n+1$)-th gamma factors as

$$
\begin{align*}
\left|\Gamma\left(\lambda_{n+1}+\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i, n+1}+1\right)\right| & =\left|\Gamma\left(\lambda_{n+1}+1\right)\right| \cdot\left|\left(-\lambda_{n+1} ;-\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i, n+1}\right)\right|^{-1} \\
& \leq c^{\prime}\left|\Gamma\left(\lambda_{n+1}+1\right)\right| \cdot\left|\left(-\lambda_{n+1} ;-\sum_{i=1}^{n-d} \lambda_{i} b_{i, n+1}\right)\right|^{-1} \\
& =c \tag{3.4}
\end{align*}
$$

Here, c^{\prime} and c are suitable constants.
When $\lambda_{n+1} \geq 0$, there exists only finite set of values such that $\lambda_{n+1}+$ $\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i, n+1} \geq 0$. Then, we can show the inequality (3.4) in an analogous way.

Now, by (3.4), we have

$$
\left|\frac{1}{\prod_{j=1}^{n} \Gamma\left(\lambda_{j}+\sum_{i=1}^{n-d} k_{i}^{\prime} b_{i j}+1\right)}\right| \leq c\left|\frac{1}{\Gamma\left(\lambda+\sum_{i=1}^{n-d} k_{i}^{\prime} b^{(i)}+1\right)}\right|
$$

We note that the right hand side is the coefficient of the series solution for the homogeneous system for \tilde{A} and the series converge for $\left(-\log \left|x_{1}\right|, \ldots,-\log \left|x_{n+1}\right|\right) \in$ $C(\tilde{A}, \tau, r)(r<1)$ uniformly with respect to \tilde{s} in an open set.

Put $x_{n+1}=1$. Since $-\log \left|x_{n+1}\right|=0$ and $\tilde{w}(\varepsilon) \in\left\{y \mid y_{n+1}=0\right\}$, we can see that

$$
\bigcap_{\tau \in \Delta} C(\tilde{A}, \tau, r) \cap\left\{y \mid y_{n+1}=0\right\}
$$

is a non-empty open set of \mathbf{R}^{n}. Therefore the dehomogenized series $\phi_{\tau}(\lambda ; x)$ converge in an open set in the (s, x) space.

Theorem 2. The dehomogenized series $\phi_{\tau}(\lambda ; x)$ satisfies the hypergeometric differential-difference system \boldsymbol{H}_{A} and they are linearly independent convergent solutions of \boldsymbol{H}_{A} when λ runs over admissible exponents associated to the initial system induced by the weight vector $\tilde{w}(\varepsilon)$.

Proof. Since $A \lambda=s$, it is easy to show that they are formal solutions of the differential-difference system \boldsymbol{H}_{A}. We will prove that we can construct m linearly independent solutions. We note that the weight vector $\tilde{w}(\varepsilon)=$ $(1, \ldots, 1,0)+\varepsilon v \in \mathbf{R}^{n+1}$ is in the neighborhood of $(1, \ldots, 1,0) \in \mathbf{R}^{n+1}$ and in the interior of a maximal dimensional Gröbner cone of $I_{\tilde{A}}$.

It follows from [11, p.119] that the minimal generating set of in ${ }_{(1, \ldots, 1,0)} I_{\tilde{A}}$ does not contain ∂_{n+1}. Since

$$
\operatorname{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}}=\operatorname{in}_{v}\left(\operatorname{in}_{(1, \ldots, 1,0)} I_{\tilde{A}}\right)
$$

does not contain ∂_{n+1}, we have

$$
M=\left\langle\operatorname{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}}\right\rangle=\left\langle\operatorname{in}_{w(\varepsilon)} I_{A}\right\rangle \quad \text { in } \mathbf{C}\left[\partial_{1}, \ldots, \partial_{n+1}\right]
$$

Here, we define $w(\varepsilon)$ with $\tilde{w}(\varepsilon)=(w(\varepsilon), 0)$. Put $\tilde{\theta}=\left(\theta_{1}, \ldots, \theta_{n+1}\right)$. From [11, Theorem 3.1.3], for generic $\tilde{\beta}=\left(\beta_{0}, \beta\right), \beta \in \mathbf{C}^{d}$, the initial ideal $\operatorname{in}_{(-\tilde{w}(\varepsilon), \tilde{w}(\varepsilon))} H_{\tilde{A}}(\tilde{\beta})$ is generated by $\operatorname{in}_{\tilde{w}(\varepsilon)}\left(I_{\tilde{A}}\right)$ and $\tilde{A} \tilde{\theta}-\tilde{\beta}$. Let us denote by $T(M)$ the standard pairs of M. From [11, Theorem 3.2.10], the initial ideal

$$
\begin{equation*}
\left\langle\operatorname{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}}, \tilde{A} \tilde{\theta}-\tilde{\beta}\right\rangle \tag{3.5}
\end{equation*}
$$

has $\# T(M)=\operatorname{vol}(\tilde{A})$ linearly independent solutions of the form

$$
\left\{\tilde{x}^{\tilde{\lambda}} \mid\left(\partial^{a}, T\right) \in T(M)\right\}
$$

Here, $\tilde{\lambda}$ is defined by $\tilde{\lambda}_{i}=a_{i} \in \mathbf{Z}_{\geq 0}, \forall i \notin T$ and $\tilde{A} \tilde{\lambda}=\tilde{\beta}$. Note that $\tilde{\lambda}$ is admissible for the d-simplex T.

Since we have

$$
\left\langle\mathrm{in}_{\tilde{w}(\varepsilon)} I_{\tilde{A}}\right\rangle=\left\langle\mathrm{in}_{w(\varepsilon)} I_{A}\right\rangle
$$

the difference between

$$
\begin{equation*}
\left\langle\mathrm{in}_{w(\varepsilon)} I_{A}, A \theta-\beta\right\rangle \tag{3.6}
\end{equation*}
$$

and (3.5) is only

$$
\theta_{1}+\cdots+\theta_{n}+\theta_{n+1}-\beta_{0}
$$

and other equations do not contain x_{n+1}, ∂_{n+1}.
For any $\left(\partial^{a}, T\right) \in T(M)$, we have $n+1 \in T$. Therefore, the two solution spaces (3.6) and (3.5) are isomorphic under the correspondence

$$
\begin{equation*}
x^{\lambda} \mapsto \tilde{x}^{\lambda} \tag{3.7}
\end{equation*}
$$

Here, we put $\tilde{\lambda}=\left(\lambda, \lambda_{n+1}\right)$ and λ_{n+1} is defined by

$$
\sum_{i=1}^{n} \lambda_{i}+\lambda_{n+1}-\beta_{0}=0
$$

It follows from [11, Theorem 2.3.11 and Theorem 3.2.10] that

$$
\left\{\tilde{x}^{\tilde{\lambda}} \mid\left(\partial^{a}, T\right) \in T(M)\right\}
$$

are \mathbf{C}-linearly independent. Therefore, from the correspondence (3.7), the functions

$$
\left\{x^{\lambda} \mid\left(\partial^{a}, T\right) \in T(M)\right\},
$$

of which cardinality is $\operatorname{vol}(A)$, are \mathbf{C}-linearly independent. Hence, series solutions with the initial terms

$$
\left\{\left.\frac{x^{\lambda}}{\Gamma(\lambda+1)} \right\rvert\,\left(\partial^{a}, T\right) \in T(M)\right\}
$$

are \mathbf{C} linearly independent, which implies the linear independence of series solutions with these starting terms [11]. We have completed the proof of the theorem and also that of Theorem 1.

Theorem 3. The holonomic rank of \boldsymbol{H}_{A} is equal to the normalized volume of A.

Proof. First we will prove $\operatorname{rank}\left(\boldsymbol{H}_{A}\right) \leq \operatorname{vol}(A)$. It follows from the Adolphson's theorem ([1]) that the holonomic rank of \mathcal{A}-hypergeometric system $H_{A}(\beta)$ is equal to the normalized volume of A for generic parameters β. It implies that the standard monomials for a Gröbner basis of the \mathcal{A}-hypergeometric system $H_{A}(s)$ in $\mathbf{C}(s, x)\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle$ consists of $\operatorname{vol}(A)$ elements. We note that elements in the Gröbner basis can be regarded as an element in the ring of differential-difference operators with rational function coefficients \mathbf{U}. We denote by ∂_{j} and r_{j} the creation and annihilation operators. The existence of them are proved in [10, Chapter 4]. Then, we have

$$
H_{j}=\partial_{j}-\prod_{i=1}^{n} S_{i}^{-a_{i j}} \in \boldsymbol{H}_{A}
$$

and

$$
B_{j}=r_{j}-\prod_{i=1}^{n} S_{i}^{a_{i j}} \in \boldsymbol{H}_{A}, \quad r_{j} \in \mathbf{C}(s, x)\left\langle\partial_{1}, \ldots, \partial_{n}\right\rangle
$$

Since the column vectors of A generate the lattice \mathbf{Z}^{d}, we obtain from B_{j} 's and H_{j} 's elements of the form $S_{i}-p(s, x, \partial), S_{i}^{-1}-q(s, x, \partial) \in \boldsymbol{H}_{A}$. It implies the number of standard monomials of a Gröbner basis of \boldsymbol{H}_{A} with respect to a block order such that $S_{1}, \ldots, S_{n}>S_{1}^{-1}, \ldots, S_{n}^{-1}>\partial_{1}, \ldots, \partial_{n}$ is less than or equal to $\operatorname{vol}(A)$.

Second, we will prove $\operatorname{rank}\left(\boldsymbol{H}_{A}\right) \geq \operatorname{vol}(A)$. We suppose that $\operatorname{rank}\left(\boldsymbol{H}_{A}\right)<$ $\operatorname{vol}(A)$ and will induce a contradiction. For the block order $S_{1}, \cdots, S_{d}>$ $S_{1}^{-1}, \cdots, S_{d}^{-1}>\partial_{1}, \cdots, \partial_{n}$, we can show that the standard monomials T of a Gröbner basis of \boldsymbol{H}_{A} in \mathbf{U} contains only differential terms and $\# T<\operatorname{vol}(A)$ by the assumption. Let T^{\prime} be the standard monomials of Gröbner basis $G(s)$ of $H_{A}(s)$ in the ring of differential operators with rational function coefficients $D(s)$. Note that $\# T^{\prime}=\operatorname{vol}(A)$. Then T is a proper subset of the set T^{\prime}. For $r \in T^{\prime} \backslash T$, it follows that

$$
\partial^{r} \equiv \sum_{\alpha \in T} c_{\alpha}(x, s) \partial^{\alpha} \quad \bmod \boldsymbol{H}_{A}
$$

From Theorem 2, we have convergent series solutions $f_{1}(s, x), \cdots, f_{m}(s, x)$ of \boldsymbol{H}_{A}, where $m=\operatorname{vol}(A)$. So,

$$
\begin{equation*}
\partial^{r} \bullet f_{i}=\sum_{\alpha \in T} c_{\alpha}(x, s) \partial^{\alpha} \bullet f_{i} \tag{3.8}
\end{equation*}
$$

Since $f_{1}(s, x), \ldots, f_{m}(s, x)$ are linearly independent, the Wronskian standing
for T^{\prime}

$$
W\left(T^{\prime} ; f\right)(x, s)=\left|\begin{array}{ccc}
f_{1}(s ; x) & \cdots & f_{m}(\beta ; x) \\
\partial^{\delta} f_{1}(s ; x) & \cdots & \partial^{\delta} f_{m}(\beta ; x) \\
\vdots & \cdots & \vdots
\end{array}\right| \quad\left(\partial^{\delta} \in T^{\prime} \backslash\{1\}\right)
$$

is non-zero for generic number s. However $r \in T^{\prime}$ and (3.8) induce the Wronskian $W\left(T^{\prime} ; f\right)(s, x)$ is equal to zero.

Finally, by $\operatorname{rank}\left(\boldsymbol{H}_{A}\right) \leq \operatorname{vol}(A)$ and $\operatorname{rank}\left(\boldsymbol{H}_{A}\right) \geq \operatorname{vol}(A)$, the theorem is proved.

Example 1. Put $A=\left(\begin{array}{lll}1 & 2 & 3\end{array}\right)$ and $\tilde{A}=\left(\begin{array}{llll}1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 0\end{array}\right)$. This is Airy type integral [11, p.223].

The matrix \tilde{A} is homogeneous. For $\tilde{w}(\varepsilon)=(1,1,1,0)+\frac{1}{100}(1,0,0,0)$, the initial ideal $\operatorname{in}_{\tilde{w}(\varepsilon)}\left(I_{\tilde{A}}\right)$ is generated by $\partial_{1}^{2}, \partial_{1} \partial_{2}, \partial_{1} \partial_{3}, \partial_{2}^{3}$. Note that the initial ideal does not contain ∂_{4}. We solve the initial system $(\tilde{A} \tilde{\theta}-\tilde{s}) \bullet$ $g=0,\left(\operatorname{in}_{\tilde{w}(\varepsilon)}\left(I_{\tilde{A}}\right)\right) \bullet g=0$. The standard pairs $\left(\partial^{a}, T\right)$ for $\operatorname{in}_{\tilde{w}(\varepsilon)}\left(I_{\tilde{A}}\right)$ are $\left(\partial_{1}^{0} \partial_{2}^{1},\{3,4\}\right),\left(\partial_{1}^{0} \partial_{2}^{0},\{3,4\}\right),\left(\partial_{1}^{0} \partial_{2}^{2},\{3,4\}\right)$. Hence, the solutions for the initial system are
$x_{1}^{0} x_{2}^{1} x_{3}^{\left(s_{1}-2\right) / 3} x_{4}^{s_{0}-1-\left(s_{1}-2\right) / 3}, x_{1}^{0} x_{2}^{0} x_{3}^{s_{1} / 3} x_{4}^{a_{0}-s_{1} / 3}, x_{1}^{0} x_{2}^{2} x_{3}^{\left(s_{1}-4\right) / 3} x_{4}^{s_{0}-2-\left(s_{1}-4\right) / 3}$ ([11]). Therefore, the \mathcal{A}-hypergeometric differential-difference system $\boldsymbol{H}_{\tilde{A}}$
has the following series solutions.

$$
\begin{aligned}
\tilde{\phi}_{1}(\tilde{\lambda}, \tilde{x})= & x_{4}^{s_{0}}\left(\frac{x_{2}}{x_{4}}\right)\left(\frac{x_{3}}{x_{4}}\right)^{\frac{s_{1}-2}{3}} \\
& \cdot \sum_{\substack{k_{1} \geq 0, k_{2} \geq-1 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3} x_{4}^{-2 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3} x_{4}^{-1 / 3}\right)^{k_{2}}}{k_{1}!\left(k_{2}+1\right)!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}+1}{3}\right) \Gamma\left(\frac{3 s_{0}-s_{1}-2 k_{1}-k_{2}+2}{3}\right)} \\
\tilde{\phi}_{2}(\tilde{\lambda}, \tilde{x})= & x_{4}^{s_{0}}\left(\frac{x_{3}}{x_{4}}\right)^{\frac{s_{1}}{3}} \\
& \cdot \sum_{\substack{k_{1} \geq 0, k_{2} \geq 0 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3} x_{4}^{-2 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3} x_{4}^{-1 / 3}\right)^{k_{2}}}{k_{1}!k_{2}!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}+3}{3}\right) \Gamma\left(\frac{3 s_{0}-s_{1}-2 k_{1}-k_{2}+3}{3}\right)} \\
\tilde{\phi}_{3}(\tilde{\lambda}, \tilde{x})= & x_{4}^{s_{0}} \sum_{\left(\frac{x_{2}}{x_{4}}\right)^{2}}^{\left(\frac{x_{3}}{x_{4}}\right)^{\frac{s_{1}-4}{3}}} \begin{array}{l}
\quad \sum_{\substack{k_{1} \geq 0, k_{2} \geq-2 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3} x_{4}^{-2 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3} x_{4}^{-1 / 3}\right)^{k_{2}}}{k_{1}!\left(k_{2}+2\right)!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}-1}{3}\right) \Gamma\left(\frac{3 s_{0}-s_{1}-2 k_{1}-k_{2}+1}{3}\right)}
\end{array}
\end{aligned}
$$

Here,

$$
L^{\prime}=\left\{\left(k_{1}, k_{2}\right) \mid k_{1} \equiv 0 \bmod 3, k_{2} \equiv 0 \bmod 3\right\} \cup\left\{\left(k_{1}, k_{2}\right) \mid k_{1} \equiv 1 \bmod 3, k_{2} \equiv 1 \bmod 3\right\}
$$

The matrix A is not homogeneous and by dehomogenizing the series solution for \tilde{A} we obtain the following series solutions for the \mathcal{A}-hypergeometric differential-difference system \boldsymbol{H}_{A}.

$$
\begin{aligned}
& \phi_{1}(\lambda, x)=x_{2} x_{3}^{\frac{s_{1}-2}{3}} \sum_{\substack{k_{1} \geq 0, k_{2} \geq-1 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3}\right)^{k_{2}}}{k_{1}!\left(k_{2}+1\right)!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}+1}{3}\right)} \\
& \phi_{2}(\lambda, x)=x_{3}^{\frac{s_{1}}{3}} \sum_{\substack{k_{1} \geq 0, k_{2} \geq 0 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3}\right)^{k_{2}}}{k_{1}!k_{2}!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}+3}{3}\right)} \\
& \phi_{3}(\lambda, x)=x_{2}^{2} x_{3}^{\frac{s_{1}-4}{3}} \sum_{\substack{k_{1} \geq 0, k_{2} \geq-2 \\
\left(k_{1}, k_{2}\right) \in L^{\prime}}} \frac{\left(x_{1} x_{3}^{-1 / 3}\right)^{k_{1}}\left(x_{2} x_{3}^{-2 / 3}\right)^{k_{2}}}{k_{1}!\left(k_{2}+2\right)!\Gamma\left(\frac{s_{1}-k_{1}-2 k_{2}-1}{3}\right)}
\end{aligned}
$$

Here $\phi_{k}(x)$ is the dehomogenization of $\tilde{\phi}_{k}(x)$.
Finally, let us present a difference Pfaffian system for A. It can be derived by using Gröbner bases of \boldsymbol{H}_{A} and has the following form:

$$
S_{1}\left(\begin{array}{c}
f \\
x_{3} \partial_{3} \bullet f \\
S_{1} \bullet f
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-\frac{s_{1} x_{1}}{6 x_{2}} & \frac{3 x_{1} x_{3}-4 x_{2}^{2}}{6 x_{2} x_{3}} & \frac{2\left(s_{1}-1\right) x_{2}+x_{1}^{2}}{6 x_{2}} \\
\frac{s_{1}}{2 x_{2}} & -\frac{3}{2 x_{2}} & -\frac{x_{1}}{2 x_{2}}
\end{array}\right)\left(\begin{array}{c}
f \\
x_{3} \partial_{3} \bullet f \\
S_{1} \bullet f
\end{array}\right) .
$$

References

[1] A.Adolphson, Hypergeometric functions and rings generated monomials. Duke Mathematical Journal 73 (1994), 269-290.
[2] K.Aomoto and M.Kita, Hypergeometric Functions, Springer-Verlag, Tokyo, 1994. (in Japanese)
[3] L.J.Billera, P.Filliman, B.Sturmfels, Constructions and complexity of secondary polytopes, Advances in Mathematics 83 (1990), 155-179.
[4] I.M.Gel'fand, A.V.Zelevinsky, M.M.Kapranov, Hypergeometric functions and toral manifolds. Functional Analysis and its Applications 23 (1989), 94-106.
[5] L. F. Matusevich, E. Miller, and U. Walther, Homological Methods for Hypergeometric Families, Journal of American Mathematical Society 18 (2005), 919-941. math . AG/0406383
[6] K.Ohara, Risa/Asir Package for Non-commutative Gröbner Bases and its Applications, Sûriken Kôkyuroku 1395 (2004), 45-49.
[7] K.Ohara, N.Takayama, Holonomic rank of \mathcal{A}-hypergeometric differential-difference equations (in Japanese), in "Computational Analysis of Hypergeometric Differential Equations" Research report of Grant-in-Aid for scientific research (KAKENHI) 15340045 28-22, 2007.
http://www.math.kobe-u.ac.jp/HOME/taka/2007/kaken-hg-all.pdf
[8] The OpenXM project, a project to integrate mathematical software systems, 1998-2007, http://www.OpenXM.org/
[9] M.Saito, Parameter shift in normal generalized hypergeometric systems. Tohoku Mathematical Journal 44 (1992), 523-534.
[10] M.Saito, B.Sturmfels, N.Takayama, N., Hypergeometric polynomials and integer programming. Compositio Mathematica, 155 (1999), 185204.
[11] M.Saito, B.Sturmfels, N.Takayama, Gröbner Deformations of Hypergeometric Differential Equations, Springer, 2000.
[12] B.Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series Volume 8, American Mathematical Society, 1996

[^0]: *Department of Computational Science, Kanazawa University
 ${ }^{\dagger}$ Department of Mathematics, Kobe University

