
An Application of the Holonomic Gradient Method to the Neural

Tangent Kernel

Akihiro Sakoda and Nobuki Takayama

2024.10.31

1 Introduction

A.Jacot et al [11] introduced a function Θ(x, x′) that converges to the neural tanget kernel (NTK). Here,
x, x′ are data vectors. In order to construct this function, we need to evalute the expectations

E(u,v)∼N(0,Λ(h))[σ(u)σ(v)] (1)

E(u,v)∼N(0,Λ(h))[σ̇(u)σ̇(v)]. (2)

Here σ is an activator function of the neural network and Λ(h) is a 2 × 2 covariance matrix inductively
defined. See, e.g., [1, (7)]. Each of these expectations is called a dual activation of σ and its derivative σ̇
respectively. Note that these expectations can be expressed as definite integrals with parameters.

Attempts have been made to calculate these expectations for various activator functions, and closed forms
have been found for many activator functions. Han et al [8] gives several new closed forms as well as a survey
on the works on closed forms.

A system of linear partial differential equations of n variables is called a holonomic system when the
dimension of its characteristic variety (the variety defined by the ideal generated by principal symbols) is
n. A distribution is called a holonomic distribution if it is a solution of a holonomic system. In this paper,
we note that when the activator function is a holonomic distribution, these expectations satisfy holonomic
systems of linear partial differential equations and further show that these holonomic systems can be derived
automatically by computer algebraic algorithms. We give the following new results based on this fact.

1. We give a method to evaluate these expectations using a numerical method for solving linear ordinary
differential equations. This will provides a general method to calculate Θ when a new holonomic
activator distribution is proposed.

2. When the activator distribution is a polynomial times a Heaviside function, this expectation can be
expressed as a closed form in terms of the Gauss hypergeometric function.

3. Han et al [8] gives a general expression of the dual activation for a polynomial activator function.
Smooth activators have Hermite polynomial expansions. They utilize this fact to give an approximate
dual activation. We present a computer algebra method, which is well-known among computer algebra
experts, to derive Hermite expansions.

The method of deriving a holonomic system and numerically evaluating definite integrals with parameters
by its numerical analysis is called the holonomic gradient method (HGM) and has been applied to a variety
of problems [26]. We refer to the book [9, chap 6] and papers [20], [21] as introductory documents. Although
methods proposed in this paper falls into the HGM, our methods are specialized for the evaluation of (1)
and (2) to make it more efficient, which is done by some improvements of numerical solvers for the HGM,
by utilizing the result by Koyama and Takmura [12], and by restriction algorithms in computer algebra to
derive holonomic systems of these expectations.

Related works: refer to [8] on a comprehensive survey on dual activation.

1

2 Computation of Θ

Jacot et al [11, Th 1] introduced a function Θ that approximates the neural tangent kernel. Arora et al [1,
Th 3] gave a precise error analysis of the approximation. Following these papers, we briefly summarize the
procedure to construct the function Θ.

Let f(x, θ) be a neural network whose input is x and parameter vector is θ. The neural tangent kernel
(NTK) is a kernel function defined by

K(x, x′) =

〈
∂f(x, θ)

∂θ
,
∂f(x′, θ)

∂θ

〉
(3)

where ∂f(x,θ)
∂θ is the gradient vector and ⟨ , ⟩ is the standard inner product.

The neural network f is a composition of linear functions and activator functions defined as follows.
Let x ∈ Rd be an input and put g(0)(x) = x, d0 = d. Our fully connected neural network of L layers is
inductively defined as follows

f (h)(x) = W (h) · g(h−1) ∈ Rdh , g(h) =

√
cσ
dh

σ
(
f (h)(x)

)
∈ Rdh , h = 1, 2, . . . , L

Here,W (h) ∈ Rdh×dh−1 is a weight matrix of the h-th layer, σ is an activator function, cσ =
(
Ez∼N(0,1)[σ(z)2]

)−1

is the inverse of the expectation of σ2 under the normal distribution with the mean 0 and the covariance 1.
σ((y1, . . . , ydh

)T) means (σ(y1), . . . , σ(ydh
))T). The output of the last layer is defined as

f(x, θ) = f (L+1)(x) = W (L+1) · g(L)(x), W (L+1) ∈ R1×dL .

Let us introduce the function Θ. We inductively define covariance matrices Λ(h)(x, x′) as follows.

Σ(0)(x, x′) = xTx′, (4)

Λ(h)(x, x′) =

(
Σ(h−1)(x, x) Σ(h−1)(x, x′)
Σ(h−1)(x′, x) Σ(h−1)(x′, x′)

)
(5)

Σ(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ(u)σ(v)] (6)

Σ̇(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ̇(u)σ̇(v)] (7)

Here, σ̇ is the derivative of the activator function σ. The function Θ(x, x′) approximating the neural tangent
kernel is defined as

Θ(x, x′) = Θ(L)(x, x′) =

L+1∑
h=1

(
Σ(h−1)(x, x′)

L+1∏
h′=h

Σ̇(x, x′)

)
(8)

Here, we put Σ̇(L+1)(x, x′) = 1.
Assume that all elements of parameter θ are independent and identically distributed as N(0, 1). When

the width of the neural network is infinite d1, d2, . . . , dL → ∞, the following theorems hold.

Theorem 1. [1, Th 3.1] Fix ϵ > 0 and δ ∈ (0, 1). Suppose σ(z) = max(0, z) and minh∈[L] dh ≥ Ω(L
6

ϵ4 log(L/δ)).

Then for any inputs x, x′ ∈ Rd0 such that ∥x∥ ≤ 1, ∥x′∥ ≤ 1, with probability at least 1− δ we have∣∣∣∣〈∂f(x, θ)

∂θ
,
∂f(x′, θ)

∂θ

〉
−Θ(L)(x, x′)

∣∣∣∣ ≤ (L+ 1)ϵ (9)

Theorem 2. [1, Th 3.2] Suppose σ(z) = max(0, z), 1/κ = poly(1/ϵ, log(n/δ)) and d1 = d2 = · · · = dL = m
with m ≥ poly(1/κ, L, 1/λ0, n, log(1/δ)). Then for any xte ∈ Rd with ∥xte∥ = 1 with probability at least 1−δ
over the random initialization, we have

|fnn(xte)− fntk(xte)| ≤ ϵ (10)

2

These theorems are error analysis for the ReLU activator max(0, z). As to convergence theorems for
other activators, see, e.g., [11, Th 1], [27].

Our definition of the neural network is a composite of linear maps (affine maps without bias terms) and
activator functions. Note that when there are bias terms [11], we may set

Σ(0) = xTx′ + β2 (11)

and
Σ(h)(x, x′) = cσE(u,v)∼N(0,Λ(h))[σ(u)σ(v)] + β2. (12)

Here, β is a hyperparameter.

3 Holonomic activator distribution, HGM, and HIE

Let σ(u) be an activator distribution. When it satisfies a linear ordinary differential equation (linear ODE)
with polynomial coefficients, it is called a holonomic activator distribution or a holonomic activator function.
Any holonomic activator distribution has finite number of poles as a function on the complex plane, because
the pole locus is the zero of the leading coefficient of the ODE. The derivative of a holonomic activator
distribution also satisfies a linear ODE with polynomial coefficients.

The ReLU activator distribution σ(u) satisfies (u∂u − 1) • σ(u) = 0 (σ(u) is annihilated by u∂u − 1)
where ∂u = d

du and • means the action of a differential operator to a distribution. The derivative σ̇(u) is
annihilated by u∂u.

Here is a list of holonomic activator distributions from the list of Wikipedia article of activator functions:
binary step, rectified linear unit (ReLU), Gaussian error linear unit (GeLU), exponential linear unit (ELU),
scaled exponential linear unit (SELU), Leaky rectified linear unit (Leaky ReLU), parametric rectified linear
unit (PReLU), Gaussian. Note that the sigmoid function 1

1+e−x is not a holonomic activator distribution.

Because it has infinitely many poles at x =
√
−1(π + 2nπ), n ∈ Z in the complex plane.

We consider the expectation E(u,v)∼N(0,Σ)[σ(u)σ(v)] where N(0,Σ) is the 2 dimensional normal distribu-

tion of the average 0 and the covariance Σ. Put x = − 1
2Σ

−1 where x is the matrix

(
x11 x12

x21 x22

)
, x12 = x21.

The expectation is written as g(x)/Z(x) where

g(x) =

∫
R2

σ(u)σ(v) exp(x11u
2 + 2x12uv + x22v

2)dudv (13)

and

Z(x) =

∫
R2

exp(x11u
2 + 2x12uv + x22v

2)dudv =
π√

x11x22 − x2
12

. (14)

We will call g(x) the unnormalized expectation and we denote the unnormalized expectation by Ê as

Ê[σ1(u)σ2(v)] =

∫
R2

σ1(u)σ2(v) exp(x11u
2 + 2x12uv + x22v

2)dudv (15)

for random variables σ1(u) and σ2(v). In this paper, we evaluate this Ê as the function of x unlike other
literature. The relationship with the expectation value expressed by Σ is

E(u,v)∼N(0,Σ)[σ1(u)σ2(v)] = Ê[σ1(u)σ2(v)]

√
det(x)

π
, Σ = −1

2
x−1. (16)

This expectation E(u,v)∼N(0,Σ)[σ1(u)σ2(v)] is often denoted by

kσ1σ2(c1, c2, r), Σ =

(
c21 c1c2r

c1c2r c22

)
, ci > 0 (17)

3

to express the dual activation in other literature. When σ1 = σ2, kσ1σ2 is denoted by kσ. See, e.g., [8].
Let Dn = C⟨x1, . . . , xn, ∂1, . . . , ∂n⟩ be the ring of differential operators where ∂i = ∂

∂xi
. Let ℓ =∑

(α,β)∈E cαβx
α∂β be an element of Dn where cαβ ∈ C, xα =

∏n
i=1 x

αi
i , ∂β =

∏n
i=1 ∂

βi

i , and E is a fi-

nite subset of Z2n
≥0. A left ideal I in Dn is called a holonomic ideal or a holonomic system (of linear PDE’s)

when the dimension of the zero set of the ideal generated by the principal symbols of I is n. For example,
the principal symbol of x1∂

2
1 + 1 is x1ξ

2
1 ∈ C[x1, ξ1] and dimV (x1ξ

2
1) = 1. Then the left ideal generated by

x1∂
2
1 + 1 in D1 is a holonomic ideal. See, e.g., [9, 6.4, 6.8] and [22] on the notion of a holonomic ideal. A

function (or a distribution) is called a holonomic function (or a holonomic distribution) when it is annihi-
lated by a holonomic ideal. The following theorem by I.N.Bernstein [6] is the theoretical foundation of our
method.

Theorem 3. [6], see also, e.g., [9, Th 6.10.8].
If the left ideal I of Dn is holonomic, then the intersection of the sum of left ideal and right ideal and Dn−1

(I + ∂nDn) ∩Dn (18)

is a holonomic ideal in Dn−1.

Roughly speaking, the theorem implies that if f is a holonomic function in n variables, then
∫
R
fdxn

is a holonomic function in n − 1 variables. An algorithm of construct the integration ideal (18) is given by
T.Oaku [15] (see also, e.g., [9, Chap 6]).

Let Rn be the rational Weyl algebra (the ring of differential operators with rational function coefficients
C(x)⟨∂1, . . . , ∂n⟩, C(x) = C(x1, . . . , xn)). It is known that when I is holonomic, then r := dimC(x)Rn/(RnI)
is finite. The dimension r is called the holonomic rank of I. The holonomic rank is equal to the dimension
of the analytic solutions of I at a generic point. Let s1 = 1, s2, . . . , sr be a basis of Rn/(RnI) regarded as a
vector space over C(x). When they are monomials of ∂, they are called standard monomials. Then, ∂isj can
be expressed as a linear combination of sk’s as ∂isj =

∑r
k=1 p

i
jk(x)sk in Rn/(RnI). The rational functions

pijk can be obtained by a Gröbner basis computation (see, e.g., [9, 6.1, 6.2]). If a function f is annihilated

by the left ideal I, then F = (f, s2 • f, . . . , sr • f)T satisfies

∂F

∂xi
= PiF (19)

where Pi is a r × r matrix Pi = (pijk). The equation is called a Pfaffian system. It is also expressed as

dF = (P1dx1 + · · ·+ Pndxn)F. (20)

It is well-known that an ODE of the rank r and the independent variable z can be translated to a system of
first order ODE ∂z • F = P (z)F where P (z) is r × r matrix. A Pfaffian system associated to a holonomic
system is a generalization of this system. See, e.g., [9, §6.2].

A holonomic gradient method (HGM) utilizing the construction above was introduced in [20] and [21].
It gives an algorithmic method to evaluate normalizing constant and expectations. The HGM is performed
by the following 3 steps.

Algorithm 1. HGM ([20], [21], [9, 6.5, 6.11]).

1. Derive a holonomic ideal and a Pfaffian system satisfied by a definite integral e(x) with parameter x,
e.g., e(x) = Ê[σ1(u)σ2(v)].

2. Evaluate e(x) and its derivatives at a special point x = x0.

3. Solve numerically the Pfaffian system with values obtained in the step 2.

A difference analogy of the above algorithm is called difference HGM , which will be discussed in Section
4.

Our algorithm to evaluate Ê[σ1(u)σ2(v)] follows the general scheme of the HGM, but is more specialized
for computing the expectation of holonomic activator distributions. The specialization is based on the
following fact by Koyama-Takemura.

4

Theorem 4. [12, Th 1, 2]
If a tempered distribution f(t) on Rd is annihilated by P1, . . . , Ps, then the integral∫

Rd

f(t) exp

 d∑
i,j=1

tixijtj +

d∑
i=1

tiyi

 dt1 · · · dtd (21)

is annihiated by

φ(Pk), 1 ≤ k ≤ s, (22)

∂xij
− 2∂yi

∂yj
, 1 ≤ i < j ≤ d, (23)

∂xii
− ∂2

yi
, 1 ≤ i ≤ d. (24)

Here, xij = xji and φ(ti) = ∂yi
and φ(∂ti) = −yi − 2

∑d
k=1 xik∂yk

. If the operators P1, . . . , Ps generate a
holonomic ideal, then (22), (23), (24) generate a holonomic ideal.

Algorithm 2.
Input: Linear ODE ℓ1 and ℓ2 annihilating σ1(u) and σ2(u) respectively. A curve on the x space.
Output: Values of Ê[σ1(u)σ2(v)] (15) on a curve.

1. Apply [12, Th 2] (Theorem 4) to the left ideal generated by ℓ1 and ℓ2 in C⟨u, v, ∂u, ∂v⟩ and obtain a
holonomic ideal I1 in C⟨x11, x12, x22, y1, y2, ∂11, ∂12, ∂22, ∂1, ∂y⟩.

2. Apply a restriction algorithm [15] to find generators of I2 := I1 ∩C⟨x11, x12, x22, ∂11, ∂12, ∂22⟩.

3. Translate I2 to a Pfaffian system.

4. Evaluate initial values of F at x11 = −1, x12 = 0, x22 = −1 or around this point by the series of
Proposition 1.

5. Solve the Pfaffian system numerically on a given curve.

Although the restriction algorithm of the step 2 works for any holonomic input on computer algebra
systems in principle, it would be better if the ideal I2 could be determined by a calculation by hand. In fact,
following the steps 1 and 2 of Algorithm 2 by hand, we have the following theorem, which expresses the dual
activation in terms of the Gauss hypergeometric function 2F1(α, β, γ; z).

Theorem 5. Let m,n are non-negative integers and Y (u) the Heaviside function.

1. The integrals Ê[umvn](x11, x12, x22) and Ê[umvnY (u)Y (v)](x11, x12, x22) satisfy the GKZ hypergeo-
metric system (see, e.g., [22])

2x11∂11 + x12∂12 +m+ 1, (25)

x12∂12 + 2x22∂22 + n+ 1, (26)

4∂11∂22 − ∂2
12 (27)

2. Assume x11, x22 < 0 and 0 ≤ x2
12

x11x22
< 1. Then, the solution space of the GKZ system above is spanned

by

φ1 := (−x11)
−α(−x22)

−β
2F1

(
α, β,

1

2
; z

)
(28)

φ2 := (−x11)
−α(−x22)

−β
√
z sign (x12) 2F1

(
α+

1

2
, β +

1

2
,
3

2
; z

)
(29)

where

α =
1 +m

2
, β =

1 + n

2
, z =

x2
12

x11x22
(30)

and sign (x) is the sign of x.

5

3. Assume x11, x22 < 0 and
x2
12

x11x22
< 1. When m,n are even numbers, the integral Ê[umvn](x11, x12, x22)

is equal to Γ(α)Γ(β)φ1. If both m,n are odd numbers, the integral Ê[umvn](x11, x12, x22) is equal to
1
2mnΓ

(
α− 1

2

)
Γ
(
β − 1

2

)
φ2. If either m or n is odd, then the integral is equal to 0.

4. Assume x11, x22 < 0 and
x2
12

x11x22
< 1. The integral Ê[umvnY (u)Y (v)](x11, x12, x22) is equal to

1

4
Γ(α)Γ(β)φ1 +

1

2
Γ

(
α+

1

2

)
Γ

(
β +

1

2

)
φ2 (31)

A proof of this theorem is given in Appendix 8.1. Note that we have

2F1((1 +m)/2, 1/2, 1/2; z) = (1− z)−1/2−m/2, (32)

2F1(1, 1, 1/2; z) =

(
1 +

√
z arcsin(

√
z)√

1− z

)
(1− z)−1, (33)

2F1(3/2, 3/2, 3/2; z) = (1− z)−3/2 (34)

and

1

a
(z∂z + a) • 2F1(a, b, 1/2; z) = 2F1(a+ 1, b, 1/2; z) (35)

1

b
(z∂z + b) • 2F1(a, b, 1/2; z) = 2F1(a, b+ 1, 1/2; z), (36)

which are called contiguity relations. These identities give a closed form of (28) when m,n are given. A
closed form of the dual activation of a polynomial activator is given by Han et al [8, Theorem 1]. Note that
(
∑q

i=0 aiu
i)(
∑q

j=0 ajv
j) =

∑q
i,j=0 aiaju

ivj . Then, our theorem gives a different closed form expression of

the dual activation for a polynomial activator
∑q

i=0 aiu
i. Analogously, our formula gives the dual activation

for a rectified polynomial activation σ(u) =
(∑q

i=0 aiu
i
)
Y (u), because we have

σ(u)σ(v) =

q∑
i,j=0

aiaju
ivjY (u)Y (v). (37)

The dual activation for a monomial is given in [8, F.7] by the hypergeometric function 2F1. This formula is
a special case of our theorem in a different form. A closed from for a rectified monomial is known [7]. Our
formula for the rectified polynomial generalizes it and seems to be new as long as we know.

Let us come back to the general algorithm of the HGM. We use the following proposition to perform the
step 4.

Proposition 1. Series expansion of Ê[σ1(u)σ2(v)] at (x11, x12, x22) = (−1, 0,−1) is
∑

k∈N3
0
ckx

k, xk =

xk11
11 xk12

12 xk22
22 where

ck =
2k12

k11!k12!k22!
×

∫ ∞

−∞
u2k11+k12σ1(u) exp(−u2)du

×
∫ ∞

−∞
v2k22+k12σ2(v) exp(−v2)dv. (38)

The holonomic system can also be used to obtain an approximate expression of the expectation Ê[σ1(u)σ2(v)]
in terms of a set of basis functions by the sparse interpolation and extrapolation method B [23]. We call the
following algorithm the holonomic interpolation/extrapolation method (HIE).

6

Algorithm 3.
Input: Linear ODE ℓ1 and ℓ2 annihilating σ1(u) and σ2(u) respectively. A set of functions B = {eβ(x) |β ∈
B} on the x space. A numerical integration scheme (tj , Tj) (evaluation points {tj} and positive weights

{Tj}). γ-th derivative values {q(γ)k } of the expectation Ê[σ1(u)σ2(v)] at {pk | k = 1, . . . , r} in the x space.

Output: An approximation of Ê[σ1(u)σ2(v)] (15) in terms of the set of functions B.

1. Apply the same procedure of the first two steps of Algorithm 2.

2. Let ℓi, i = 1, . . . , s be generators of the left ideal I2.

3. Put f(x) =
∑

β∈B fβeβ(x) where fβ are unknown coefficients.

4. Minimize

ℓ({fβ}) :=
s∑

i=1

∑
j

Tj

∣∣∣∣∣∣
∑
β∈B

fβ(ℓieβ)(tj)

∣∣∣∣∣∣
2

(39)

under the constraints at data points∑
β

fβe
(γ)
β (pk) = q

(γ)
k , k = 1, . . . , r, α ∈ Γ (40)

where e
(α)
β is ∂α • eβ (γ-th derivative of eβ).

5. Return
∑

β fβeβ(x).

We give remarks about this algorithm.
Since the constraints are linear, we can parametrize the space of fβ ’s by an affine map and reduce the

problem to a least square problem with no constraint. Or, the loss function for the minimization may be set
as

ℓ({fβ}) :=
s∑

i=1

∑
j

Tj

∣∣∣∣∣∣
∑
β∈B

fβ(ℓieβ)(tj)

∣∣∣∣∣∣
2

+ µ

r∑
k=1

∣∣∣∣∣∣
∑
β

fβeβ(pk)− qk

∣∣∣∣∣∣
2

(41)

to transform the minimization problem to that with no constraint. It is also a least square problem. Here,
µ is a paramter. The larger the paramter µ, the closer the solution is to the given values of f at {pk}.

There are various ways to select a set of basis functions. For example, if we can find a set of fundamental
solutions of I2 • eβ = 0, the problem is reduced to find a best set of coefficients fβ satisfying the constraints
(40) approximately. In particular, if the basis functions are a basis of series solutions at a point pk and given
values are derivatives standing for standard monomials at x = pk, then our algorithm constructs the series
expansion of the expectation at x = pk.

Finally, we briefly note some other applications of our holonomic approach. Holonomic systems for Ê
can be utilized to derive several formulas of the function Ê other than obtaining series expressions. For
example, it can be used in the following ways; finding a higher order ODE for one direction (e.g., [9, Th
6.1.11]), estimating an asymptoric expansion of Ê at a singular point (e.g., [5]), finding a rational solution
(e.g.,[3]).

4 Algorithms to derive an Hermite expansion for a holonomic
activation function

Han et al [8, Th 2] gave a method to evaluate the expectation Ê[σ(u)σ(v)] by utilizing the Hermite expansion
of σ(u). Let Hen(t) be probabilist’s n-th Hermite polynomial e.g., He0(t) = 1, He1(t) = t, He2(t) = t2 − 1,
He3(t) = t3 − 3t, The n-th coefficient of the Hermite expansion of σ(u) is cn√

2πn!
where

cn =

∫ ∞

−∞
σ(u)Hen(u) exp(−u2/2)du. (42)

7

The function σ(u) is expressed as
∑∞

n=0
cn√
πn!

Hen(x). If σ(u) is a holonomic function, then cn satisfies a

linear difference equation. Creative telescoping algorithm (see, e.g., [18], [13]) or the integration algorithm
of D-modules with the Mellin transformation (see, e.g., [16]) can be used to derive it. By difference HGM,
we mean that obtaining cn by the difference equation of rank r (recurrence relation) and initial values
c0, . . . , cr−1.

Examples of deriving Hermite expansions by these algorithms are given in Section 6.1.3 and Appendix
8.5.

The Hermite expansion expresses the dual activation as follows. These results are by [4] and [8].

Theorem 6. [4], [8]

1. [4] If σ is absolutely continuous and satisfies a homogenity σ(at) = |a|qσ(t) for all a, t ∈ R, the the
dual activation is

kσ(c1, c2, r) = cq1c
q
2

∞∑
j=0

(
cj√
πj!

)2

rj (43)

2. [8] Let σ(t) be a polynomial
∑q

j=0 ajt
j. The dual activation is

kσ(c1, c2, r) =

q∑
ℓ=0

rℓ(c1)rℓ(c2)r
ℓ (44)

where

rℓ(t) =

⌊(q−ℓ)/2⌋∑
i=0

aℓ+2i(ℓ+ 2i)!

2ii!
√
ℓ!

t2i+ℓ. (45)

As we will see later, the difference HGM is more efficient than evaluating the integral (42) indivisually.
Thus, the difference HGM strengthens the Hermite expansion method above.

5 Faster Evaluation by the HGM

“HGM all at once method”. When a definite integral with parameters satisfies a holonomic system, it
is possible to find integral values at many parameter points by a single run of the Runge-Kutta method. It
is an advantage of utilizing the HGM.

Let us explain what it means by an example. We use a Pfaffian system given in [9, §6.2] for our example.

Put P1 =

(
0 z2/z1

−z1z2 1/z1

)
and P2 =

(
0 1

−z21 0

)
. Consider the Pfaffian system

∂z1 • F = P1F, ∂z2 • F = P2F

where F = (1, ∂z2)
T • f . Note that f = −

∫ z1z2
π/2

sin(t)dt = cos(z1z2) is a solution. Suppose that we want to

evalute f at p1 = (π/2, 1), p2 = (π/2, 2) and p3 = (π, 3). Let p0 = (z1, z2) = (π/2, 0) be the starting point of
the Runge-Kutta method. The value of F at the point is (1, 0). We apply the Runge-Kutta method along
the piecewise linear path connecting p0, p1, p2, p3. In other words, we solve the ODE

dF

dt
= P2(π/2, t)F for t ∈ [0, 2]

to find values of F at p1 and p2, and solve the ODE

dF

dt
=

(
P1(z1(t), z2(t))

dz1(t)

dt
+ P2(z1(t), z2(t))

dz2(t)

dt

)
F

8

along the path z1(t) = π/2 + (π − π/2)(t− 2), z2(t) = 2 + (3− 2)(t− 2), t ∈ [2, 3] with the initial condition
F (p2) to obtain the value F at p3. It is faster than applying the Runge-Kutta method 3 times independently
from p0 to pi, i = 1, 2, 3. See [17] as to a sample code.

“Taylor expansion with HGM” method. Other approach to accelerate the HGM is to solve an ODE
on a curve or a line and determine the value of f near a point of the curve or the line by a Taylor expansion. We

explain this method by the example above. We denote by fij the derivative
∂i+jf

∂zi
1∂z

j
2

. Since ∂z1 •F = (f10, f11),

we can obtain the value of (f10, f11) by evaluating P1F . Note that F = (f, f01). Let a be a point on the curve
or the line. Since the first order Taylor expansion at z = a is f(a+ h) = f(a) + f10(a)h1 + f01(a)h2, we can
express f(a+h) in terms of the value of F at z = a. Values of higher order derivatives can also be expressed
by F by differentiating the Pfaffian system. For example, we have ∂2

z1 • F = ∂P1

∂z1
F + P1

∂F
∂z1

= ∂P1

∂z1
F + P 2

1F

and ∂2
z1 • F = (f20, f21). Then, f20(a) and f21(a) can be expressed in terms of F (a).

6 HGM and HIE for ReLU and some other activator functions

6.1 ReLU

Let σ(u) be ReLU (rectified linear unit) function; σ(u) = max(u, 0) = uY (u) where Y (u) is the Heaviside
function. Closed forms of the expectations (1) and (2) in terms of arccos and

√
are known for the activator

function ReLU. Let Λ be

(
c21 c1c2r

c1c2r c22

)
, c1, c2 ≥ 0, |r| ≤ 1 Then,

E(u,v)∼N(0,Λ)[σ(u)σ(v)] =
r(π − arccos(r)) +

√
1− r2

2π
· c1c2 (46)

E(u,v)∼N(0,Λ(h))[σ̇(u)σ̇(v)] =
π − arccos(r)

2π
(47)

See, e.g., [7], [1, Appendix I] as to details. By specializing our Theorem 5 to the case m = n = 1, we
also obtain a closed form in a different form. Although closed forms are already known, we explain the
algorithmic procedure of the HGM and HIE by using the example of the ReLU, because a small example is
easier to understand the concept of our method.

6.1.1 HGM for ReLU

Since ReLU σ(u) satisfies the linear differential equation (u∂u − 1) • σ(u) = uY ′(u) + uY (u) − σ(u) = 0
(uY ′(u) = uδ(u) = 0) as the distribution, we can apply [12, Th 2] (Theorem 4) to obtain a holonomic system
satisfied by g(x). See Appendix 8.1 as to details. The steps 1 and 2 of Algorithm 2 are performed by hand
there. See Appendix 8.2 to perform the steps 1 and 2 by a computer algebra system.

Applying step 3 of Algorithm 2, we obtain the following theorem by Gröbner basis computations.

Theorem 7. 1. The holonomic system (66) is of rank 2. Put

F = (1, ∂12)
T • g.

Then we have the Pfaffian system ∂x11
• F − P11F = 0, ∂x12

• F − P12F = 0, ∂x22
• F − P22F = 0.

Explicit form of the 2× 2 matrix Pij is given in Appendix 8.3.

2. The singular locus of the Pfaffian system (the denominator of the matrices Pij) is

x11x22(x
2
12 − x22x11). (48)

Note that the condition that −X is positive definite is

x11 < 0, x11x22 − x2
12 > 0. (49)

9

Let us proceed on the step 4 of Algorithm 2. We apply Proposition 1. We take the special point
x = (x11, x12, x22) = (−1, 0,−1) =: x0 where the integral splits to a product of single integrals;

∂d11
x11

∂d12
x12

∂d22
x22

• g(x)|x=x0

= 2d12

∫ ∞

0

u1+2d11+d12 exp(−u2)du

∫ ∞

0

v1+d12+2d22 exp(−v2)dv. (50)

Since ∫ ∞

0

um exp(−u2)du =
Γ
(
1+m
2

)
2

, (51)

Γ(n+ 1) = n!, and Γ
(
1
2 + n

)
= (2n−1)!!

2n
√
π, we have the series expansion of g(x) at x = x0 as

g(x) =
∑

d12:even

2d12

4d!
(d11 + d12/2)!(d22 + d12/2)!x

′
11

d11xd12
12 x′

22
d22

+ π
∑

d12:odd

2d12(2d11 + d12)!!(2d22 + d12)!!

23+d11+d22+d12d!
x′
11

d11xd12
12 x′

22
d22 (52)

where d! = d11!d12!d22!, x
′
ij = xij + 1, and

∑
d12:even

means
∑

{d∈N3
0 | d12:even}. In particular, we have

(1, ∂x12
) • g(x)|x=x0

=

(
1

4
,
π

8

)
. (53)

Let us perform the step 5 of Algorithm 2. The domain x11 < 0, x11x22 − x2
12 > 0 is convex. Choose a

point x1 in the domain. Since the domain is convex, we can restrict the Pfaffian system on the line rt+ x0,
r = x1 − x0, 0 ≤ t ≤ 1 and obtain the ODE

dF

dt
= (P11(rt+ x0)r11 + P12(rt+ x0)r12 + P22(rt+ x0)r22)F, (54)

F (0) =

(
1

4
,
π

8

)T

. (55)

The fist element of F (1) gives the value of g(x) at x = x1.
An evaluation for σ̇ by the HGM is explained in Appendix 8.4.

6.1.2 HIE for ReLU

We restrict the system of differential equation to x11 = x22 = −1 and apply the HIE. The ODE on x11 =
x22 = −1 is

L • f = 0, L = (1− x2
12)∂

2
12 − 5x12∂12 − 4, (56)

which can be obtained by the restriction algorithm. We want to solve it on x12 ∈ [−1, 1]. Let e0, e1, . . . , em
be a basis and suppose that f =

∑m
β=0 fβeβ where fβ ’s are unknown coefficients. We suppose that the value

of f is given at p1 and p2 and the correponding values are q1 and q2. Then, the loss function is

n∑
j=0

Tj (f0(L • e0)(tj) + f1(L • e1)(tj) + · · · fm(L • em)(tj))
2
+ µ

2∑
k=1

 m∑
β=0

fβeβ(pk)− qk

2

(57)

Since (L•eβ)(tj)’s and eβ(pk)’s are numbers, it is a least square problem for an unknown vector (f0, f1, . . . , fm).

10

6.1.3 Hermite expansion of ReLU

Let σ(u) = Y (u)u be the ReLU function where Y (u) is the Heaviside function. It satisfies (u∂u−1)•σ(u) = 0
as a distribution. Apply an algorithm to find annihilating ideal for a product of distributions (see, e.g., [16]),
we find an annihilating operator for Y (u)u·Hen(u) exp(−u2/2). It also annihilated by the difference operator
S2
n−uSn+(n+1) where Sn is the shift operator for the variable n. For example, we have Sn•Hen = Hen+1.

Applying an algorithm to find linear difference equation for cn we obtain a difference operator annihilating
cn as

s2n + (n− 1)

Initial values are c0 = 1, c1 =
√

π
2 .

6.2 Other activator distributions

The HGM can be applied for any holonomic activator distributions. To demonstrate this fact, we discuss on
the HGM for an activator function

Y (u) sinu, (58)

which we will call ReSin, in Appendix 8.5. Note that ReSin is not a smooth function. We also discuss on
GeLU in Appendix 8.6, which is a smooth function. Note that the Hermite expansion by [8] provides very
low approximate errors for smooth activator functions like GeLU1, but not for non-smooth distributions like
ReLU and ReSin Y (u) sinu.

7 Experiments

In this section, we perform experiments on our algorithms. Before showing data of experiments, we explain
what we mean by learning and inference. Let {(x1, y1), (x2, y2), . . . , (xN , yN)} be training data. Here xi is
an input and yi is an output. Let K(x, x′) be the kernel function. The learning in the kernel method means
that obtaining a matrix H∗ ∈ RN×N whose i, j element is K(xi, xj) from the training data. We call H∗ the
kernel matrix . We mean by inference obtaining an output from any input x by the map

f(x) = (K(x, x1),K(x, x2), . . . ,K(x, xN))(H∗ + λE)−1(y1, y2, . . . , yN)T . (59)

Here E is the identity matrix and the term λE is added to H∗ because there are cases where H∗ does not
have the inverse. We put λ = 0.01 in our experiments. The kernel function K(x, x′) is approximated by the
function Θ.

Example 1. Learning sinπx by a 2 layer neural network with bias terms. Input and output are 1 dimen-
sional. Training data (xi, yi) are equally spaced 15 points xi’s in [−1, 1] and their yi = sin(πxi)’s values.
Inference uses equally spaced 20 points in [−1, 1].

This small problem is our running example to make experiments by our methods for some activators.

7.1 Comparison of our methods for some activators

We compare the following methods for our running example 1.

1. Closed forms of dual activation. It is referred as “closed”.

2. Gauss-Hermite quadrature of [8, 3.3]. It is referred as “GaussHerm” or “gh”. We use an adaptive
meshsize control with the relative error tolerance 1e-10.

3. HGM of Algorithm 2. It is referred as “hgm”. Our implementation uses scipy.solve ivp function
with rtol=1e-10.

1Note that closed form of the expectations for GeLU is given in [25] and [8].

11

4. HGM all at once given in Section 5. It is referred as “all-at-once” or “aao”.

Note that these methods except closed forms work for any holonomic activator functions. Monte-Carlo
methods also work for any holonomic activator functions, but Monte-Carlo methods are relatively slow and
inaccurate, and then we do not make a comparison.

Timing data are taken on a machine with Intel Core i5-12400 CPU (4.4 GHz). We use numpy 1.24.4 and
scipy 1.10.1 on wsl2.

7.1.1 ReLU

Method Training time (s) Inference time (s)
closed 0.007292
GaussHerm 1.500 1.442
hgm 1.316 1.953
all-at-once 4.352 5.143

Kernel error
gh− hgm 0.0010347
gh− aao 0.0010348
hgm− aao 2.7771× 10−8

Inference error
GaussHerm 0.97729

hgm 0.96766
all-at-once 0.97460

Here, the kernel error is the Frobenius norm divided by the number of elements of the difference of two kernel
matrices. The inference error is the mean square error between the inference values and sinπx values at the
20 points. Note that we use the Ridge regression with λ = 0.01 and then the graph is a little different with
that of y = sinπx. As is remarked in [8, Th 2, 3.3], the Gauss-Hermite quadrature or Hermite expansion
provide much lower approximation errors than non-smooth ones. Since ReLU is not smooth, the inference
by GaussHerm has a little larger inference error. See Figure 1.

7.1.2 GeLU

Method Training time (s) Inference time (s)
closed Not yet in our code Not yet in our code
GaussHerm 41.25 62.56
hgm 86.21 120.2
all-at-once 32.89 381.1

Kernel error
gh− hgm 1.1718× 10−8

gh− aao 1.4983× 10−8

hgm− aao 1.5138× 10−8

Inference error
GaussHerm 0.97163

hgm 0.97166
all-at-once 0.97163

The Gauss-Hermite quadrature provides low approximation errors and the inference error of it is also small,
because GeLU is a smooth activator. The HGM and HGM all-at-once provide also low approximation
errors as good as GaussHerm. See also Figure 2. Note that our implementation of HGM has not yet
included a code to evaluate solutions near the singularity of an ODE, and then we use GaussHerm when
det(covariance matrix) ≤ 1× 10−3. Note also that the closed form for GeLU is given in [8], but the case of
σ̇ has not been implemented in our code. It is the reason of “not yet in our code” in the table.

2We call this machine “sw”.

12

7.1.3 ReSin

Method Training time (s) Inference time (s)
closed NA NA
GaussHerm 3.916 4.949
hgm 289.5 1005
all-at-once 21.07 23.39

Kernel error
gh− hgm 0.0019103
gh− aao 0.0016427
hgm− aao 0.00062839

Inference error
GaussHerm 0.97328

hgm 0.96874
all-at-once 0.95745

Since ReSin is not smooth, the Gauss-Hermite quadrature does not give a low approximation error. On
the other hand, the HGM and HGM all-at-once give a good approximation and HGM all-at-once works
in a reasonable time. Starting point of the HGM is (−1, 1/100,−1). Note that the HGM is used only
when 1 × 10−3 ≤ det(covariance matrix) ≤ 1 and the Gauss-Hermite quadrature is used in other intervals
because of the same reason of the case of GeLU. A closed form for ReSin is not known except an infinite
series expression in terms of contiguous family of Gauss hypergeometric functions (Theorem 5) as long as
we know, then the entry of closed form is “NA” (not available).

7.2 Improvements of numerical solvers

We evaluate the unnormalized expecation Ê (15) for the ReSin activator for 91 points (x, x′), which were
used when calculating NTK for Example 1. We use the “HGM all at once” method in Section 5 for 91
points. Although there are more points 152 − 15 = 210 to be evaluated, we remove points near the singular
locus of the ODE and groups clusters of nearby points into one point to obtain the 91 points. Precisely, we
take points satisfying 0.01 ≤ det(covariance matrix) ≤ 1. Two points whose distance is less than 1 × 10−5

are represented by one point.
We will see that the closer the path of integration of an ODE solver is to a straight line, the faster the

HGM will be. Points are extracted for each “step” from among the sorted 91 points. We devide equally
segments between these points and create new 91 points. When “step” is 1, the set of new 91 points is
nothing but the original one. When “step” increases, the set of points has a distribution closer to a straight
line. See Figure 4. The execution time of evaluating Ê at 91 points becomes faster when “step” increases.

step 1 2 5 10 15 20
time (s) 2.065 1.820 1.550 1.115 0.771 0.692

See Figure 5. Note that evaluations at nearby points of a cluster can be done by the Taylor expansion with
HGM method in Section 5 from the representative point of the cluster.

The timing data above is taken on AMD EPYC 7552 48-Core Processor of 1.5GHz with 1T bytes memory
without GPU 3. We use the ODE solver gsl odeiv rkf45 with rtol=1e-10 of the GNU scientific library
2.7.1 written in the language C on the Debian GNU linux 12.2. The program is compiled by gcc version
is 12.2.0 with the option -O3. Note that the execution time of the C code is about 1.9 times faster than a
python code using the scipy solve ivp with rtol=1e-10 for the activator ReSin. More precisely, the python
code took 3.9166s with scipy version 1.10.1 and the C code took 2.065s.

Acknowledgments
The second author is supported in part by the JST CREST Grant Number JP19209317 and by JSPS
KAKENHI Grant Number JP21K03270.

3We refer this machine as “machine o3n”.

13

8 Appendix

8.1 Proof of Theorem 5

The function tm1 tn2 is annihilated by t1∂t1 − m, and t2∂t2 − n. The distribution tm1 tn2Y (t1)Y (t2) is also
annihilated by these operators becuase t1∂t1 • Y (t1) = t1δ(t1) = 0. Applying [12, Th 1, 2], we have the
following annihilating operators for the integral Ê[umvn]:

∂1(−y1 − 2(x11∂1 + x12∂2))−m, (60)

∂2(−y2 − 2(x12∂1 + x22∂2))− n, (61)

∂12 − 2∂1∂2, (62)

∂11 − ∂2
1 , (63)

∂22 − ∂2
2 , (64)

where ∂ij = ∂/∂xij , ∂i = ∂/∂yi. Let I1 be the left ideal generated by the operators above. We want to find el-
ements of I2 = (I1+y1D+y2D)∩C⟨x11, x12, x22, ∂11, ∂12, ∂22⟩ whereD = C⟨y1, y2, x11, x12, x22, ∂1, ∂2, ∂11, ∂12, ∂22⟩.
Expanding (60), we have

−y1∂1 − 1− 2(x11∂
2
1 + x12∂1∂2)−m

→ −y1∂1 − 2(x11∂11 + (1/2)x12∂12)−m− 1, by (62) and (63).

Thus, −2x11∂11 −x12∂12 −m− 1 is an element of I2. Analogusly, we can see that −x12∂12 − 2x22∂22 −n− 1
is an element of I2 from (61). Finally, we have

(∂12 − 2∂1∂2)
2

= 4∂2
1∂

2
2 − 4∂1∂2∂12 + ∂2

12

→ 4∂11∂22 − 2∂2
12 + ∂2

12 by (62) ∼ (64),

= 4∂11∂22 − ∂2
12

We have proved 1. Note: Changing variables x11 → 2x11 and x22 → 2x22, we obtain the GKZ hypergeometric

system of a standard form for the matrix A =

(
2 1 0
0 1 2

)
. We can also obtain the GKZ system for the

unnormalized expectation Ê by a theory of integral representations of the GKZ system [14].
Once the system of equations is expressed as a GKZ system, we can apply a general procedure to obtain

a series solution, see, e.g., [22]. A solution is written as

xρ11

11 xρ12

12 xρ22

13 f(z) (65)

where z =
x2
12

x11x22
, ρ11 = −(m + 1)/2, ρ12 = 0, ρ22 = −(n + 1)/2, and f(z) is a solution of the Gauss

hypergeometric differential equation

[θz(θz + 1/2− 1)− z(θz + (m+ 1)/2)(θz + (n+ 1)/2)] • f = 0, θz = z∂z.

It has two independent solutions 2F1(α, β, 1/2; z) and z1/22F1(α+1/2, β+1/2, 3/2; z). Thus, we have proved
the statement 2.

Note that the integral Ê[umvn] and Ê[umvnY (u)Y (v)] are holomorphic at x11 = x22 = −1, x12 = 0.
Restricting x11 = x22 = −1, we have a series expansion of c1φ1 + c2φ2 = c1 + c2x12 +O(x2

12). Note that we

14

have

Ê[umvn](−1, 0,−1) =

∫ ∞

−∞
um exp(−u2)dv

∫ ∞

−∞
vn exp(−v2)dv

=
(1 + (−1)m)(1 + (−1)n)

4
Γ(α)Γ(β),

Ê[umvnY (u)Y (v)](−1, 0,−1) =

∫ ∞

0

um exp(−u2)dv

∫ ∞

0

vn exp(−v2)dv

=
1

4
Γ(α)Γ(β)

and

∂Ê[umvn]

∂x12
(−1, 0,−1) = 2

∫ ∞

−∞
um+1 exp(−u2)dv

∫ ∞

−∞
vn+1 exp(−v2)dv

= 2
(1 + (−1)m+1)(1 + (−1)n+1)

4
mnΓ(α− 1/2)Γ(β − 1/2),

∂Ê[umvnY (u)Y (v)]

∂x12
(−1, 0,−1) = 2

∫ ∞

0

um+1 exp(−u2)dv

∫ ∞

0

vn+1 exp(−v2)dv

=
1

2
Γ(α+ 1/2)Γ(β + 1/2).

The constants c1, c2 are determined by these values and we obtain the statements 3 and 4.

8.2 Deriving a holonomic system by computer algebra

We apply the restriction algorithm (see, e.g., [9, §6.10] or [15]) and its implementation on Risa/Asir [19] to
the left ideal I generated by

∂y1
(−y1 − 2x11∂y1

− 2x12∂y2
)− 1,

∂y2
(−y2 − 2x12∂y1

− 2x22∂y2
)− 1,

∂12 − 2∂y1
∂y2

,

∂11 − ∂2
y1
, ∂22 − ∂2

y2

in the ring of differential operators D = Q⟨x11, x12, x22, y1, y2, ∂11, ∂12, ∂22, ∂y1
, ∂y2

⟩. The following ideal
called the restriction ideal of I to y1 = y2 = 0:

I ′ := (I + y1D + y2D) ∩Q⟨x11, x12, x22, ∂11, ∂12, ∂22⟩ (66)

where ∂ij = ∂xij These constructions are based on Gröbner bases computation in the Weyl algebra. Here is
a Risa/Asir code to obtain I ′.

import("nk_restriction.rr");;

V=[y1,y2,x11,x12,x22]; DV=poly_dvar(V);

P1=poly_dmul(dy1,-y1-2*x11*dy1-2*x12*dy2,V)-1;

P2=poly_dmul(dy2,-y2-2*x12*dy1-2*x22*dy2,V)-1;

I=[P1,P2,dx11-dy1^2,dx22-dy2^2,dx12-2*dy1*dy2];

dp_gr_print(1);

Iprime=nk_restriction.restriction_ideal(I,V,DV,[1,1,0,0,0]);

8.3 Proof of Theorem 7

We translate I ′ to a Pfaffian system by a Gröbner basis computation in the ring of differential operators
with rational function coefficients (the rational Weyl algebra). See, e.g., [9, §6.2] on the translation. Here is
a Risa/Asir code to translate I ′ to a Pfaffian system.

15

import("yang.rr");;

VV=[x11,x12,x22]; DVV=poly_dvar(VV);

yang.define_ring(["partial",VV]);

RII=map(dp_ptod,Iprime,DVV);

yang.verbose();

RG=yang.buchberger(RII);;

Std=[1,dx12];

Pf=yang.pfaffian(map(dp_ptod,Std,DVV),RG);

P11 =

 −1
x11

− 1
2x12

x11

2x12

x11(x2
12−x22x11)

1
2 (2x

2
12+3x22x11)

x11(x2
12−x22x11)

 ,

P12 =

(
0 1
−4

x2
12−x22x11

−5x12

(x2
12−x22x11)

)
,

P22 =

 −1
x22

− 1
2x12

x22

2x12

x22(x2
12−x22x11)

1
2 (2x

2
12+3x22x11)

x22(x2
12−x22x11)

 .

8.4 HGM for the Derivative of ReLU (Heaviside Function)

Let σ(u) be ReLU (rectified linear unit) function; σ(u) = max(u, 0). The derivative of σ(u) is the Heaviside
function Y (u). Put

g(x) =

∫
R2

Y (u)Y (v) exp(x11u
2 + 2x12uv + x22v

2)dudv.

The expectation for the Heaviside function g(x)/Z(x) is called the orthant probability. Koyama and Takemura
[12] gave a method to evaluate it in general dimensions by the HGM. In particular, they show that the 2-
dimensional orthant probability satisfies a Pfaffian system of rank 4. Since the average of the normal
distribution we consider is 0, the orthant probability satisfies a simpler Pfaffian system than the system
given by them. It follows from [12, Th 1, Th 2] that g(x) is annihilated by the left ideal

I ′ = I ∩R⟨x11, x12, x22, ∂11, ∂12, ∂22⟩ (67)

where I is generated by

∂y1(−y1 − 2x11∂y1 − 2x12∂y2),

∂y2(−y2 − 2x12∂y1 − 2x22∂y2),

∂12 − 2∂y1∂y2 ,

∂11 − ∂2
y1
, ∂22 − ∂2

y2
.

Theorem 8. 1. The holonomic system (67) is of rank 2.

2. Put
F = (1, ∂12)

T • g.

16

Then we have the Pfaffian system ∂x11 •F −P11F = 0, ∂x12 •F −P12F = 0, ∂x22 •F −P22F = 0 where

d1 = −x2
12 + x22x11,

P11 =

(−1/2
x11

−1/2x12

x11

−1/2x12

d1x11

−1/2x2
12−x22x11

d1x11

)
,

P12 =

(
0 1
1
d1

3x12

d1

)
,

P22 =

(−1/2
x22

−1/2x12

x22

−1/2x12

d1x22

−1/2x2
12−x22x11

d1x22

)
.

By (51) and an analogous discussion with ReLU case, We have (1, ∂x12
• g(x)|x=x0

=
(
π
4 ,

1
2

)
, which gives

an accurate initial value to solve ODE’s for the HGM.

8.5 HGM and difference HGM for ReSin

We call the function σ(y) = Y (u) sin(u) the ReSin (rectified sine) function where Y (x) is the Heaviside
function. Note that σ(u) is not a differentiable function and is a tempered distribution.

8.5.1 HGM for ReSin

Since ReSin σ(u) satisfies the linear differential equation u2(∂2
u + 1) • σ(u) = 0 as the distribution, we can

apply [12, Th 2] (Theorem 4) to obtain a holonomic system satisfied by g(x).
Applying steps 2 and 3 of Algorithm 2, we obtain the following theorem by Gröbner basis computations.

It took 13.114s on the machine o3n.

Theorem 9. 1. The holonomic system for ReSin of the form (66) is of rank 8 and standard monomials
can be taken as

(1, ∂11, ∂12, ∂22, ∂
2
11, ∂

2
12, ∂

2
22, ∂11∂12∂22). (68)

Put
F = (1, ∂11, ∂12, ∂22, ∂

2
11, ∂

2
12, ∂

2
22, ∂11∂12∂22)

T • g.
Then we have the Pfaffian system ∂x11

• F − P11F = 0, ∂x12
• F − P12F = 0, ∂x22

• F − P22F = 0.
Explicit form of the 8× 8 matrix Pij is given in [17].

2. The singular locus of the Pfaffian system (the denominator of the matrices Pij) is

x4
11x12x

4
22(x

2
12 − x22x11)

4(x2
12 + x22x11). (69)

8.5.2 Deriving Hermite expansion by Difference HGM

Let σ(u) = Y (u) sin(u) be the ReSin function. It satisfies u2(∂2
u + 1) • σ(u) = 0 as a distribution. Applying

an algorithm to find annihilating ideal for a product of distributions (see, e.g., [16]), we find an annihilating
operator for Y (u) sin(u) ·Hen(u) exp(−u2/2). It is also annihilated by the difference operator S2

n − 2uSn +
2(n+1) where Sn is the shift operator for the variable n. For example, we have Sn•Hen = Hen+1. Applying
an algorithm to find linear difference equation for cn we obtain a difference operator annihilating cn as

s6n + 2(n+ 3))s4n + (n2 + 5n+ 7))s2n + (n+ 1)(n+ 2).

Initial values for the difference equation are c0 =
√
2F
(

1√
2

)
, c1 =

√
π
2e , c2 = 1 −

√
2F
(

1√
2

)
, c3 =

−
√

π
2e , c4 =

√
2F
(

1√
2

)
− 2, c5 =

√
π
2e where F is the Dawson’s function F 4 and e is Euler’s number

(Napier’s number). These initial values are expressed in terms of special values of Dawson’s integral. Here
is a session by Mathematica.

4https://en.wikipedia.org/wiki/Dawson_function

17

Mathematica 11.2.0 Kernel for Linux x86 (64-bit)

Copyright 1988-2017 Wolfram Research, Inc.

In[1]:= hermiteE[n_,x_]:=2^(-n/2)*HermiteH[n,x/2^(1/2)]

In[2]:= Integrate[Sin[u]*hermiteE[0,u]*Exp[-u^2/2],{u,0,Infinity}]

1

Out[2]= Sqrt[2] DawsonF[-------]

Sqrt[2]

In[3]:= Integrate[Sin[u]*hermiteE[1,u]*Exp[-u^2/2],{u,0,Infinity}]

Pi

Out[3]= Sqrt[---]

2 E

To avoid errors in the numerical calculation of cn by the recurrence formula, we put d0 =
√
2F
(

1√
2

)
and

d2 =
√
π√
2e

and solve the recurrence by the rational arithmetic in Q[d1, d2] and finally replace d1, d2 by their

approximate numerical values. There are several methods to avoid such errors of difference HGM (see, e.g.,
[24]).

Our difference HGM gives all ck, k ≤ 100 in 0.009315s. On the other hand, it takes 1.6998s by Mathe-
matica just to obtain only c99 on o3n.

8.6 HGM for GeLU

Let σ(u) be the Gaussian error linear unit (GeLU) [10]

x(1 + erf(x)) (70)

where the error function erf(x) is 2√
π

∫ x

0
exp(−t2)dt. Note that the GeLU of [10] is 1

2x(1 + erf(x/
√
2) which

agrees with ours by changing the variable x/
√
2 to x and multiplying a scalar.

8.6.1 Expectation for GeLU

In this section, we will evaluate the expectations by the HGM. In other words, we will numerically evaluate
the integral (13) by the HGM. Since we have explained how to apply the framework of the HGM to the
evaluation for ReLU in Section 6, we only explain only the differences.

Proposition 2.

The GeLU σ(u) is annihilated by the linear ordinary differential operator

u2∂2
u − 2u(1− u2)∂u + 2(1− u2) (71)

Since GeLU σ(u) is a holonomic function by the proposition, we can apply [12, Th 2] (Theorem 4) to
obtain a holonomic system satisfied by g(x) (13).

Theorem 10. Let Z(x) = π/
√
x11x22 − x2

12 be the normalizing constant for the normal distribution of the

covariance matrix (−2x)−1, x =

(
x11 x12

x12 x22

)
and of the average 0.

1. The holonomic systems satisfied by the expectation multiplied by the normalizing constant g1(x) =
Ê[σ(u)σ(v)] = Z(x)E[σ(u)σ(v)] (g(x) of (13) for the case that σ is GeLU) and g2(x) = Ê[σ̇(u)σ̇(v)]Z(x)E[σ̇(u)σ̇(v)]
(g(x) of (13) for the case that σ is the derivative of GeLU) are of rank 8.

2. The singular locus of the Pfaffian system for Ê[σ(u)σ(v)] with respect to

S = (1, ∂11, ∂12, ∂22, ∂12∂22, ∂11∂12, ∂11∂22, ∂11∂12∂22)
T • gi

18

is the union of zeros of d1 = x22, d2 = x22 − 1, d3 = x11, d4 = x11 − 1, d5 = x2
12 − x22x11, d6 =

x2
12 − x22x11 + x22, d7 = x2

12 + (−x22 + 1)x11, d8 = x2
12 + (−x22 + 1)x11 + x22 − 1, d9 = x4

12 + (−x2
22 +

x22)x
2
11 + (x2

22 − x22)x11.

This theorem can be proven in an analogously way as the proof of Theorem 7 as follows.

1. Derive the holonomic system by applying [12] (Theorem 4) and Proposition 2.

2. Translate the holonomic system by applying the restriction algorithm and an algorithm to obtain a
Pfaffian system from the holonomic system. Risa/Asir codes to perform them are at [17].

These are performed in 338.8s on o3n.

8.6.2 Proof of Proposition 2

The Erf function erf(u) satisfies ∂u • erf(u) = 2√
π
exp(−u2). Then, it is annihilated by the operator (∂u +

2u)∂u, which also annihilates f1(u) = 1+erf(u). Let us derive the ODE satisfied by σ(u) = f1(u)f2(u). The
function f2(u) = u is annihilated by u∂u − 1. We derive a linear dependent relation for σ, σ′ = f ′

1f2 + f1f
′
2

and σ′′ = f ′′
1 f2 + 2f ′

1f
′
2 + f1f

′′
2 . Since f1 satisfies the rank 2 ODE and f2 satisfies the rank 1 ODE, we can

express σ′ and σ′′ in terms of f1f2, f
′
1f2 by replacing f ′′

1 by −2uf ′
1, f

′
2 by f2/u and f ′′

2 by 0. In fact, we have
σ = f1f2, σ

′ = f ′
1f2 + f1f2/u, σ

′′ = −2uf ′
1f2 + 2f ′

1f2/u and these 3 functions are linearly dependent over
the rational function field C(u). Put the coefficients of the dependency as ci(u). Then, we have

c2σ
′′ + c1σ

′ + c0σ = (c1/u+ c0)f1f2 + ((−2u+ 2/u)c2 + c1)f
′
1f2 = 0.

Assuming f1f2 and f ′
1f2 are linearly independent, we have c1/u+ c0 = 0 and (−2u+ 2/u)c2 + c1 = 0. Put

c1 = 1. Then, c0 = −1/u and c2 = 1
2u−2/u = u

2u2−2 . Thus, we obtain (71) by multiplying 2u(u2 − 1).

8.6.3 Evaluation of the expecation of the derivative of GeLU

We retain the notation of 8.6.2. The unnormalized expecation (15) Ê[(f(u) + g(u))(f(v) + g(v))] is a sum
of Ê[f(u)f(v)], Ê[f(u)g(v)], Ê[g(u)f(v)], and Ê[g(u)g(v)] where f(u) = u erf ′(u) and g(u) = 1 + erf(u).
Since these functions satisfy simpler ODE’s, evaluation becomes faster than utilizing the holonomic system
for g2(x) in Theorem 10.

Theorem 11. 1. The unnormalized expectation Ê[f(u)f(v)] is equal to

4x12

2((x11 − 1)(x22 − 1)− x2
12)

3/2
. (72)

2. The holonomic systems satisfied by Ê[f(u)g(v)] and Ê[g(u)g(v)] are of rank 2. The singular locus
of the Pfaffian system with respect to (1, ∂12)

T • Ê[f(u)g(v)] is the union of zeros of x22, x22 − 1,
x11 − 1, d1 = x2

12 − x22x11 + x22, d2 = x2
12 + (−x22 + 1)x11 + x22 − 1. The singular locus of the

Pfaffian system with respect to (1, ∂12)
T • Ê[g(u)g(v)] is the union of zeros of d1, d2, d3 = x2

12−x22x11,
d4 = x2

12 + (−x22 + 1)x11, d5 = x4
12 + (−x2

22 + x22)x
2
11 + (x2

22 − x22)x11. These Pfaffian systems are
given at [17].

3. Values of Ê[f(u)g(v)] and Ê[g(u)g(v)] at x =

(
−1 0
0 −1

)
are 0 and 1

2 respectively. Values of ∂12 •

Ê[f(u)g(v)] and ∂12 • Ê[g(u)g(v)] at x =

(
−1 0
0 −1

)
are π and 1 respectively.

Proof. 1. Ê[f(u)f(v)] is a moment of the normal distribution and is easy to obtain an explicit form.
2. The Pfaffian systems are obtained in an analogous way as the proof of Theorem 7.
3. The integrals are products of single integrals for the special value of x in the statement. We can obtain
an explicit form of these single integrals, e.g., with a help of Mathematica.

Derivation of Pfaffian systems is done in 10.066s on o3n.

19

8.7 Degenerated Normal Distribution

When det(Σ) = 0, the HGM for the double integral (13) cannot be applied because det(X) = 1/det(−Σ/2)
becomes infinity. Following the discussion of [2, p.30], we will derive a single integral representation for the
expectation E[σ(u)σ(v)].

Let Σ be the covariance matrix of rank 1. Then there exists a non-sigular symmetric matrix B such that

BΣB =

(
1 0
0 0

)
. Let (c1, c2)

T be the first column vector of the matrix B−1. Then, the expectation for the

activator σ is expressed as
1√
2π

∫ ∞

−∞
σ(c1z)σ(c2z) exp

(
−z2

2

)
dz (73)

by [2, p.30]. To obtain the expectation for σ̇, we may replace σ by σ̇ in (73). In order to evaluate the integral,
we may utilize the HGM for c1 and c2 or an efficient numerical integrator for single integrals.

References

[1] Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, On Exact
Computation with an Infinitely Wide Neural Net, https://arxiv.org/abs/1904.11955

[2] T.W.Anderson, An Introduction to Multivariate Statistical Analysis, 2003, John Wiley & Sons, Inc.

[3] M.A.Barkatou, T.Cluzeau, C.El Bacha, J.-A.Weil, Computing Closed Form Solutions of Integrable
Connections, ISSAC ’12: Proceedings of the 37th International Symposium on Symbolic and Algebraic
Computation, 43–50.
https://www.unilim.fr/pages_perso/thomas.cluzeau/Packages/IntegrableConnections/PDS.

html Y.Cho and L.Saul, Kernel methods for deep learning, Neural Information, Processing Systems
(NeurIPS), 2009.

[4] A.Daniely, R.Frostig, Y.Singer, Toward Deeper Understanding of Neural Networks: The Power of Ini-
tialization and a Dual View on Expressivity, NIPS 2016, https://arxiv.org/abs/1602.05897

[5] M.A.Barkatou, M.Jaroschek, S.S.Maddah, Formal solutions of completely integrable Pfaffian systems
with normal crossings, Journal of Symbolic Computation 81 (2017) 41–68.

[6] The analytic continuation of generalized functions with respect to a parameter, Functional analysis and
its applications 6 (1972), 273–285.

[7] Y.Cho and L.Saul, Kernel methods for deep learning. In Neural Information Processing Systems
(NeurIPS), 2009.

[8] I.Han, A.Zandieh, J.Lee, R.Novak, L.Xiao, A.Karbasi, Fast Neural Kernel Embeddings for General
Activations, arxiv:220904121.

[9] T.Hibi et al, Gröbner Bases ; Statistics and Software systems, 2013, Springer.

[10] D.Hendrycks, K.Gimpel, Gaussian Error Linear Units (GELUs), 2016, arXiv:1606.08415.

[11] A.Jacot, F.Gabriel, C.Honger, Neural Tangent Kernel: Convergence and Generalization in Neural Net-
works, arxiv:1806.07572.

[12] T.Koyama, A.Takemura, Calculation of orthant probabilities by the holonomic gradient method.

[13] C.Koutschan, A Fast Approach to Creative Telescoping, Mathematics in Computer Science 4(2-3)
(2010), 259-266.

20

[14] S.J.Matsubara-Heo, Laplace, Residue, and Euler integral representations of GKZ hypergeometric func-
tions, arxiv:1801.04075, (2018).

[15] T.Oaku, Algorithms for b-functions, restrictions, and algebraic local cohomology groups of D-modules,
Advances in Applied Mathematics 19 (1997), 61–105.

[16] T.Oaku, Y.Shiraki, N.Takayama, Algebraic algorithms for D-modules and numerical analysis, Lecture
notes series on computing, computer mathematics (2003) 23–39.

[17] http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm-ntk-01

[18] M.Petkovsek, H.S.Wilf, D.Zeilberger, A=B, AK Peters/CRC Press, 1996.

[19] Computer algebra system Risa/Asir,
https://github.com/openxm-org/OpenXM

[20] H.Nakayama, K.Nishiyama, M.Noro, K.Ohara, T.Sei, N.Takayama, A.Takemura, Holonomic Gradient
Descent and its Application to Fisher-Bingham Integral, Advances in Applied Mathematics 47 (2011),
639–658

[21] H.Hashiguchi, Y.Numata, N.Takayama, A.Takemura, Holonomic gradient method for the distribution
function of the largest root of a Wishart matrix, Journal of Multivariate Analysis, 117, (2013) 296-312,

[22] M.Saito, B.Sturmfels, N.Takayama, Gröbner Deformations of Hypergeometric Differential Equations,
Algorithms and Computation in Mathematics 6, 1999, Springer.

[23] N.Takayama, T.Yaguchi, Y.Zhang, Comparison of Numerical Solvers for Differential Equations for Holo-
nomic Gradient Method in Statistics, arxiv:2111.10947

[24] Y.Tachibana, Y.Goto, T.Koyama, N.Takayama, Holonomic gradient method for two-way contingency
tables, Algebraic statistics 11 (2020) 125–153.

[25] R.Tsuchida, T.Pearce, C. van der Heide, F.Roosta, and M.Gallagher. Avoiding Kernel Fixed Points:
Computing with ELU and GELU Infinite Networks. Conference on Artificial Intelligence (AAAI), 2021.

[26] http://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html

[27] G.Yang, Scaling limits of wide neural networks with weight sharing: Gaussian process behavior, gradient
independence, and neural tangent kernel derivation. arxiv:1902.04760.

21

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 hgm
hgm(all at once)
gh

Figure 1: Inference by ReLU

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 hgm
hgm(all at once)
gh

Figure 2: Inference by GeLU

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 hgm
hgm(all at once)
gh

Figure 3: Inference by ReSin

22

−30 −25 −20 −15 −10 −5 0
x_11

0

5

10

15

20

x_
12

step=1
step=2
step=5
step=10
step=15
step=20

Figure 4: Integration pathes of an ODE solver.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
step

0.8

1.0

1.2

1.4

1.6

1.8

2.0

se
co
nd

s

Figure 5: Timing when the parameter “step” in-
creases.

23

