Paper

Shift relations and reducibility of some Fuchsian differential equations of order $2, \ldots, 6$ with three singular points by Akihito Ebisu, Yoshishige Haraoka, Hiroyuki Ochiai, Takeshi Sasaki and Masaaki Yoshida, submitted
arXiv 2111.11192, math.CA
doi number will be listed later

Explanation of data

For the Fuchsian differential equations treated in the paper we list the shift operators in the form that the data is readable by the help of the mathematical software Maple.

Definition of the differential equations

The equations we treated in the paper are

$$
E_{6}, S E_{6} ; \quad E_{5}, S E_{5} ; \quad E_{4}, S E_{4}, Z_{4}, \mathrm{ST}_{4},{ }_{4} E_{3} ; \quad E_{3}, S E_{3}, Z_{3}, E_{3 a}, \ldots, E_{3 d},{ }_{3} E_{2} ; \quad E_{2} .
$$

The equation E_{2} is the Gauss hypergeometric equation, which is related to all others; They are mutually related as in the figure

Horizontal arrows stand for specializations keeping the spectral type, and other lines for factorizations. The three equations on the right side of the dotted line are rigid, while each of the remaining ones has one accessory parameter. The four equations $E_{3 a}, \ldots, e_{3 d}$ and some arrows are not shown to make the figure less complex.

In the following, we use a maple notation $d x$ used in DEtools of Maple, which means the differential operator $d / d x$ relative to the variable x and the notation z denotes the operator $x * d x$. The mark $*$ means the multiplication as well as composition of differential operators.

We summarize the defintion of the differential equations. The text-file equations.txt lists the maple forms of the differential equations.

- $E_{6}=E_{6}(e 1, \ldots, e 9)=T 0+T 1 * d x+T 2 * d x^{2}+T 3 * d x^{3}$

```
T0:=(z+s+2)*(z+s+1)*(z+s)*(z+e7)*(z+e8)*(z+e9):
T1:=(z+s+2)*(z+s+1)*B1:
T2:=(z+s+2)*B2:
T3:=-(z+3-e1)*(z+3-e2)*(z+3-e3):
B1:=T13*z^3+T12*z^2+T11*z+T10:
B2:=T23*z^3+T22*z^2+T21*z+T20:
```

where s is determined by the Fuchs relation $e 1+\cdots+e 9+3 s+9=15$.
The operators $B 1, B 2$ and the polynomials $T i j$ are given in the file equations.txt.

- $S E_{6}$ is a specialization of E_{6} with the condition

$$
e 1-2 e 2+e 3=e 4-2 e 5+e 6=e 7-2 e 8+e 9
$$

It is parameterized by (a, b, c, g, p, q, r) by the relations

```
e1:=p+r+1:
e2:=a+c+p+r+2:
e3:=2a+2c+g+p+r+3:
e4:=q+r+1:
e5:=b+c+q+r+2:
e6:=2b+2c+g+q+r+3:
e7:=-2c-p-q-r-1:
e8:=-a-b-2c-p-q-r-g-2:
e9:=-2a-2b-2c-p-q-r-g-3:
s:=-r:
```

- The equation $E_{5}=E_{5}(e 1, \ldots, e 8)=x * P n+P 0+P 1 * d x+P 2 * d x^{2}$ is the quotient of E_{6} with the condition $e 9=0$ divied by $d x$ on the right.

```
Pn:=(z-r+1)*(z-r+2)*(z-r+3)*(z+e7+1)*(z+e8+1):
P0:=(z-r+1)*(z-r+2)*B1 (e9=0) :
P1:=(z-r+2)*B2(e9=0):
P2:=-(z+3-e1)*(z+3-e2)*(z+3-e3):
```

where $r=(e 1+\cdots+e 8-6) / 3$.

- $S E_{5}$ is a specialization of E_{5} with the condition

$$
e 1-2 e 2+e 3=e 4-2 e 5+e 6=e 7-2 e 8 .
$$

It is parameterized by (a, b, c, g, p, q) as

```
e1:= -2*a - 2*b - 2*c - g - q - 2:
e2:= -a - 2*b - c - g - q - 1:
e3:= -2*b - q:
e4:= -2*a - 2*b - 2*c - g - p - 2:
e5:= -b - 2*a- c - g - p - 1:
e6:= -2*a - p:
e7:= 2*a + 2*b + g + 2:
e8:= a + b + 1:
```

- $E_{4}=E_{4}(e 1, \ldots, e 7)=Q_{0}+Q_{1} * d x+Q_{2} * d x^{2}$ is defined as

```
Q0:=(z+e5)*(z+e6)*(z+e7)*(z+e8):
Q1:=-2*\mp@subsup{z}{}{\wedge}3+Q12*\mp@subsup{z}{}{\wedge}2+Q11*z+Q10:
Q12:=e1+e2-e5-e6-e7-e8-5:
Q11:=3* (e1+e2)-e1*e2+e3*e4-e5*e6-e5*e7-e5*e8-e6*e7-e6*e8-e7*e8-8:
Q2:=(z-e1+2)*(z-e2+2):
```

where $e 8$ is determined by the Fuchs raltion $e 1+e 2+\cdots+e 7+e 8=4$ and $Q 10$ is given in equations.txt. The equation is written also as

$$
E_{4}:=x^{2} *(x-1)^{2} d x^{4}+p 3 * d x^{3}+p 2 * d x^{2}+p 1 * d x+p 0:
$$

where

```
p3:= x*(x-1)*((-t11-t12+10)*x+t11-5):
p2:= (-3*t11-3*t12+t23+19)*x^2 +(5*t11+t12-t21+t22-t23-19)*x+4-2*t11+t21:
p1:= (t3-t11-t12+t23+5)*x+Q10:
p0:= e5*e6*e7*e8:
```

Refer to equations.txt for $t 11, t 12, \ldots$

- $S E_{4}$ is a specialization of E_{4} with the condition

$$
e 1-2 e 2+1=e 3-2 e 4+1=e 5-2 e 6+e 7+e 8, \quad e 1+\cdots+e 7+e 8=4
$$

It is parameterized by (a, b, c, g, q) as

```
e1:=-2b-q-1:
e2:=-a-2b-c-g-q-2:
e3:=-2c-q-1:
e4:=-a-2c-b-g-q-2:
e5:=q+1:
e6:=b+c+q+2:
e7:=2b+2c+g+q+3:
e8:=2a+2b+2c+g+q+4:
```

- Z_{4} is a specialization of E_{4} with the condition

$$
e 1+e 2-1=e 3+e 4-1=-(e 5+e 6-1)
$$

It is parameterized by $(A 0, A 1, A 2, A 3, k)$ as

$$
\begin{aligned}
& e 1=1 / 2-A 0-k: \\
& \text { e2=1/2+A0-k: } \\
& \text { e3=1/2-A1-k: } \\
& \text { e4=1/2+A1-k: } \\
& \text { e5=1/2-A2+k: } \\
& \text { e6=1/2+A2+k: } \\
& \text { e7=1/2-A3+k: } \\
& \text { e8=1/2+A3+k: }
\end{aligned}
$$

- $\mathrm{ST}_{4}=\mathrm{ST}_{4}(e 1, \ldots, e 6)=V 0+V 1 * d x+V 2 * d x^{2}$ is given as

```
V0 := (z+s+1)*(z+s)*(z+e5)*(z+e6):
V1 := (z+s+1)*(-2*z^2+(e1+e2-e5-e6-4)*z
    +1/4*((e6-e5)^2-(e3-e4)^2+(e1-e2)^2+2*(e1+e2-3)*(e5+e6+1)-1)):
V2 := (z+2-e1)*(z+2-e2):
```

where s is determined by the Fuchs relation $e 1+e 2+e 3+e 4+e 5+e 6+2 * s+3=6$.

- ${ }_{4} E_{3}(a 0, a 1, a 2, a 3 ; b 1, b 2, b 3):=(z+a 0) *(z+a 1) *(z+a 2) *(z+a 3)-(z+b 1) *(z+b 2) *(z+b 3) * d x$ is the generalized hypergeometric equation of rank 4 .
- $E_{3}=E_{3}(e 1, \ldots, e 6)=x * S n+S 0+S 1 * d x$ is defined as

```
Sn:=(z+e5)*(z+e6)*(z+e7):
SO:= -2*z^3+(2*e1+2*e2+e3+e4-3)*z^2
    +(-e1*e2+(e3-1)*(e4-1)-e5*e6-(e5+e6)*e7)*z+a00,\\
S1:=(z-e1+1)*(z-e2+1):
```

where $e 7$ is determined by the relation $e 1+e 2+e 3+e 4+e 5+e 6+e 7=3$ and $a 00$ is the accessory parameter defined as

```
54*a00:= -4*(e1+e2-e3-e4)^3-27*e5*e6*e7+9*(e1+e2-e3-e4)*(e5*e6+e5*e7+e6*e7-2)
    +9*e1*e2*(e1+e2-1)+18*(e1+e2-1)*(e3^2+e3*e4+e4^2)
    -9*e3*e4*(e3+e4-1)-18*(e3+e4-1)*(e1^2+e1*e2+e2^2):
```

- $S E_{3}$ is a specialization of E_{3} with the condition

$$
2 e 1-e 2=2 e 3-e 4=-e 5+2 e 6-e 7 .
$$

It is parameterized by (a, b, c, g) as:

```
e1:=a+c+1:
e2:=2e1+g:
e3:=b+c+1:
e4:=2e3+g:
e5:=-2c:
e6:=- (a+b+2c+g+1) :
e7:=2e6+g-e5:
```

The accessory parameter turns out to be

$$
a 00=c *(2 * a+2 * c+1+g) *(2 * a+2 * b+2 * c+2+g) .
$$

- Z_{3} is a specialization of E_{3} with the condition

$$
e 1+e 2+e 5=e 3+e 4+e 5=1
$$

It is parameterized by $(A 0, A 1, A 2, A 3)$ as

```
e1:=-A0-A3:
e2:=A0-A3:
e3:=-A1-A3:
e4:=A1-A3:
e5:=2*A3+1:
e6:=A2+A3+1:
```

The accessory parameter is given by

$$
a 00:=(2 * A 3+1) *\left(A 0^{2}-A 1^{2}-A 3^{2}+A 2^{2}-2 * A 3-1\right) / 2
$$

- $E_{3 a}, E_{3 b}, E_{3 c}, E_{3 d}$ are specializations of E_{3} with the conditions

$$
\begin{gathered}
e 3=e 1, e 4=e 2 \\
e 2=-e 3-e 5-2 * e 6+3-e 1, e 4=e 3-e 5+e 6 \\
e 2=2 * e 1+e 3+e 4, e 5=1-e 1-e 3-e 4 ; \\
e 2=3 / 2-e 1-1 / 2 * e 3-1 / 2 * e 4-3 / 2 * e 6, e 5=e 1+e 6
\end{gathered}
$$

respectively.

- ${ }_{3} E_{2}(a 0, a 1, a 2 ; b 1, b 2):=(z+a 0) *(z+a 1) *(z+a 2)-(z+b 1) *(z+b 2) * d x$ is the generalized hypergeometric equation of rank 3 .
- $E_{2}:=E_{2}(e 1, e 2, e 3, e 4)=E(a, b, c)=(z+a) *(z+b)-(z+c) * d x$ is the Gauss hypergeometric equation: We used the parameters $(e 1, e 2, e 3, e 4)$ defined as $e 1=1-c, e 2=c-a-b, e 3=a$, and $e 4=b$, where $e 1+e 2+e 3+e 4=1$.

Shift operators

We review definitions of shift operators and explain the text-files for such operators.
Given a differential operator $E(a)$ with parameter a of order n, suppose a shift operator P_{a+} (resp. $\left.P_{a-}\right)$ exists, which is an operator of order lower than n sending $\operatorname{Sol}(E(a))$ to $\operatorname{Sol}(E(a+1))(r e s p . \operatorname{Sol}(E(a-$ $1)$)), we have a shift relation such as

$$
E(a+1) \circ P_{a+}(a)=Q_{a+}(a) \circ E(a) \quad\left(\text { resp. } E(a-1) \circ P_{a-}(a)=Q_{a-}(a) \circ E(a)\right),
$$

where $Q_{a \pm}$ are some operators of the same order of $P_{a \pm}$.
In the following, we list the operators $P_{a \pm}$ and $Q_{a \pm}$ for each equation and each shift.
For the Gauss equation E_{2}, the following shift operators are classically known:

$$
\begin{array}{ll}
P_{a+}=x * d x+a, & Q_{a+}=x * d x+a+1, \\
P_{a-}=x(x-1) * d x+a+b x-c, & Q_{a-}=x(x-1) * d x+a+b x-c+x-1, \\
P_{c+}=(x-1) * d x+a+b-c, & Q_{c+}=P_{c+}, \\
P_{c-}=x * d x+c-1, & Q_{c-}=P_{c-} .
\end{array}
$$

For the generalized hypergeometric equations ${ }_{4} E_{3}$ and ${ }_{3} E_{2}$, they are fully described in the paper $\S 14$. For the equations E_{4} and $S E_{4}$, we find only a simple shift operator, which are mentioned in the paper. For the equation E_{3}, we could not find a shift operator.

For other equations, refer to the list of shift operators given in

E6PQ.txt	for E6,
SE6PQ.txt	for SE6,
E5PQ.txt	for E5,
SE5PQ.txt	for SE5,
Z4PQ.txt	for Z4,
ST4PQ.txt	for ST4,
Z3PQ.txt	for Z3,
SE3.txt	for SE3,
E3aPQ.txt	for E3a,
E3bPQ.txt	for E3b,
E3cPQ.txt	for E3c,
E3dPQ.txt	for E3d.

The equations $E_{3 a}, \ldots, E_{3 d}$ that are not in the figure above are specializations of E_{3} treated in $\S 12.5$, which admits shift operators.

