Let be a ring and
be elements of
.
The left
-module
%% syz.sm1 [ (x,y) ring_of_differential_operators [[(Dx) 1 (Dy) 1]] weight_vector 0 ] define_ring [ (x Dx + y Dy). (Dx^2 + Dy^2). ] /ff set ff { [[(h). (1).]] replace homogenize} map /ff2 set [ff2 [(needBack) (needSyz)]] groebner /ans set ; (Syzygies are ...) message ans 2 get ::The 0-th element of ans is the Gröbner basis. The 1st element of ans is the transformation matrix from the input to the Gröbner basis. The 2nd element of ans is a set of generators of the syzygies of the input.