Copyright © Masayuki Noro and Kenta Nishiyama 2009. All rights reserved.
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
• New b-function package nn_ndbf.rr | ||
Index |
0.1 Computation of b-function | ||
0.2 Computation of annihilator ideal |
In this manual we explain about a new b-function package ‘nn_ndbf.rr’ in asir-contrib. To use this package one has to load ‘nn_ndbf.rr’.
[...] load("nn_ndbf.rr");
A prefix ndbf.
is necessary to call the functions in this package.
In this manual we also explain about some related built-in functions.
0.1.1 ndbf.bfunction | ||
0.1.2 ndbf.bf_local | ||
0.1.3 ndbf.bf_strat | ||
0.1.4 ndbf.action_on_gfs |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ndbf.bfunction
a polynomial
a polynomial
a list [v1,w1,...,vn,wn]
0 or 1
a list of variables
op=1
is given,
a pair [b,P] of the global b-function and
a differential operator satisfying Pf^(s+1)=b(s)f^s.
The operator P is represented as a commutative polynomial
of variables v1,...,vn,dv1,...,dvn. The d-variables
are treated as commutative indeterminates in this representation and
the polynomial should be regarded as a canonical representation with each polynomial coefficient
placed at the left of d-variables.
weight=[v1,w1,...,vn,wn]
is given,
the computation is done with a weight (w1,...,wn) for (v1,...,vn).
This option is useful when f is weighted homogeneous with respect to (w1,...,wn).
heuristic=1
is given
a change of ordering is done before entering elimination.
In some cases this improves the total efficiencty.
vord=v
is given, a variable order v is used istead.
[...] load("nn_ndbf.rr"); [...] ndbf.bfunction(x^3-y^2*z^2); -11664*s^7-93312*s^6-316872*s^5-592272*s^4-658233*s^3-435060*s^2 -158375*s-24500 [...] ndbf.bfunction(x^3-y^2*z^2|op=1); [-11664*s^7-93312*s^6-316872*s^5-592272*s^4-658233*s^3-435060*s^2 -158375*s-24500,(108*z^3*x*dz^3+756*z^2*x*dz^2+1080*z*x*dz+216*x)*dx^4 ... +(729/8*z^3*dz^5+9477/8*z^2*dz^4+5103/2*z*dz^3+2025/2*dz^2)*dy^2] [...] F=256*u1^3-128*u3^2*u1^2+(144*u3*u2^2+16*u3^4)*u1-27*u2^4 -4*u3^3*u2^2$ [...] ndbf.bfunction(F|weight=[u3,2,u2,3,u1,4]); 576*s^6+3456*s^5+8588*s^4+11312*s^3+8329*s^2+3250*s+525
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ndbf.bf_local
a list
a polynomail
a list [v1,a1,...,vn,an]
a list [v1,w1,...,vn,wn]
0 or 1
a list of variables
op=1
is given,
a triple [b,a,P] of the local b-function, a polynomial and
a differential operator satisfying Pf^(s+1)=ab(s)f^s.
The operator P is represented as a commutative polynomial
of variables v1,...,vn,dv1,...,dvn. The d-variables
are treated as commutative indeterminates in this representation,
the polynomial should be regarded as a canonical representation with each polynomial coefficient
placed at the left of d-variables.
weight=[v1,w1,...,vn,wn]
is given,
the computation is done with a weight (w1,...,wn) for (v1,...,vn).
This option is useful when f is weighted homogeneous with respect to
(w1,...,wn).
heuristic=1
is given
a change of ordering is done before entering elimination.
In some cases this improves the total efficiencty.
vord=v
is given, a variable order v is used istead.
[...] load("nn_ndbf.rr"); [...] ndbf.bf_local(y*((x+1)*x^3-y^2),[x,-1,y,0]); [[-s-1,2]] [...] ndbf.bf_local(y*((x+1)*x^3-y^2),[x,-1,y,0]|op=1); [[[-s-1,2]],12*x^3+36*y^2*x-36*y^2,(32*y*x^2+56*y*x)*dx^2 +((-8*x^3-2*x^2+(128*y^2-6)*x+112*y^2)*dy+288*y*x+(-240*s-128)*y)*dx +(32*y*x^2-6*y*x+128*y^3-9*y)*dy^2+(32*x^2+6*s*x+640*y^2+39*s+30)*dy +(-1152*s^2-3840*s-2688)*y]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ndbf.bf_strat
:: computes a stratification associated with local b-function of a polynomial f.
a list
a polynomial
a list [v1,w1,...,vn,wn]
0 or 1
li ist of variables
weight=[v1,w1,...,vn,wn]
is given,
the computation is done with a weight (w1,...,wn) for (v1,...,vn).
This option is useful when f is weighted homogeneous with respect to
(w1,...,wn).
heuristic=1
is given
a change of ordering is done before entering elimination.
In some cases this improves the total efficiencty.
vord=v
is given, a variable order v is used istead.
[...] load("nn_ndbf.rr"); [...] F=256*u1^3-128*u3^2*u1^2+(144*u3*u2^2+16*u3^4)*u1-27*u2^4 -4*u3^3*u2^2$ [...] ndbf.bf_strat(F); [[[u3^2,-u1,-u2],[-1],[[-s-1,2],[16*s^2+32*s+15,1],[36*s^2+72*s+35,1]]], [[-4*u1+u3^2,-u2],[96*u1^2+40*u3^2*u1-9*u3*u2^2,...],[[-s-1,2]]], [[-2048*u1^3-...],[-u3*u2,u2*u1,...],[[-s-1,1],...]]], [[-256*u1^3+128*u3^2*u1^2+...],[...],[[-s-1,1]]], [[],[-256*u1^3+128*u3^2*u1^2+...],[]]]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ndbf.action_on_gfs
:: computes the action of an operatior op on gf^(s+a)
a list
a differential operator
a list [g,f,s+a]
list of variables of f (v=[v1,...,vn])
[...] load("nn_ndbf.rr"); [...] F=x^5-y^2*z^2$ [...] B=ndbf.bfunction(F|op=1)$ [...] ndbf.action_on_gfs(B[1],[x,y,z],[1,F,s+1]); [-62500000000*s^13-...-2985505717194*s-245434132944,x^5-z^2*y^2,s] [...] L=ndbf.bf_local(F,[x,0,y,0,z,1]|op=1)$ [...] ndbf.action_on_gfs(L[2],[x,y,z],[1,F,s+1]); [(-100000*s^5-500000*s^4-990000*s^3-970000*s^2-470090*s-90090)*z^2, x^5-z^2*y^2,s]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
0.2.1 ndbf.ann |
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
ndbf.ann
a list of differential operators
a polynomial
a list [v0,w1,...,vn,wn]
ndbf.bf_local
.
weight=[v1,w1,...,vn,wn]
is given,
the computation is done with a weight (w1,...,wn) for (v1,...,vn).
This option is useful when f is weighted homogeneous with respect to (w1,...,wn).
[...] load("nn_ndbf.rr"); [...] ndbf.ann(x*y*z*(x^3-y^2*z^2)); [(-x^4*dy^2+3*z^4*x*dz^2+12*z^3*x*dz+6*z^2*x)*dx+4*z*x^3*dz*dy^2 -z^5*dz^3-6*z^4*dz^2-6*z^3*dz, (x^4*dy-3*z^3*y*x*dz-6*z^2*y*x)*dx-4*z*x^3*dz*dy+z^4*y*dz^2+3*z^3*y*dz, (-x^4+3*z^2*y^2*x)*dx+(4*z*x^3-z^3*y^2)*dz,2*x*dx+3*z*dz-11*s, -y*dy+z*dz]
[ << ] | [ < ] | [ Up ] | [ > ] | [ >> ] | [Top] | [Contents] | [Index] | [ ? ] |
Jump to: | N |
---|
Index Entry | Section | ||
---|---|---|---|
| |||
N | |||
ndbf.action_on_gfs | 0.1.4 ndbf.action_on_gfs | ||
ndbf.ann | 0.2.1 ndbf.ann | ||
ndbf.bfunction | 0.1.1 ndbf.bfunction | ||
ndbf.bf_local | 0.1.2 ndbf.bf_local | ||
ndbf.bf_strat | 0.1.3 ndbf.bf_strat | ||
|
Jump to: | N |
---|
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
[Top] | [Contents] | [Index] | [ ? ] |
This document was generated on May 1, 2025 using texi2html 5.0.
The buttons in the navigation panels have the following meaning:
Button | Name | Go to | From 1.2.3 go to |
---|---|---|---|
[ << ] | FastBack | Beginning of this chapter or previous chapter | 1 |
[ < ] | Back | Previous section in reading order | 1.2.2 |
[ Up ] | Up | Up section | 1.2 |
[ > ] | Forward | Next section in reading order | 1.2.4 |
[ >> ] | FastForward | Next chapter | 2 |
[Top] | Top | Cover (top) of document | |
[Contents] | Contents | Table of contents | |
[Index] | Index | Index | |
[ ? ] | About | About (help) |
where the Example assumes that the current position is at Subsubsection One-Two-Three of a document of the following structure:
This document was generated on May 1, 2025 using texi2html 5.0.