### `katsura`, `hkatsura`, `cyclic`, `hcyclic`

katsura(n)
hkatsura(n)
cyclic(n)
hcyclic(n)
:: Generates a polynomial list of standard benchmark.
return
list
n
integer
• Function `katsura()` is defined in `katsura', and function `cyclic()` in `cyclic'.
• These functions generate a series of polynomial sets, respectively, which are often used for testing and bench marking: `katsura`, `cyclic` and their homogenized versions.
• Polynomial set `cyclic` is sometimes called by other name: `Arnborg`, `Lazard`, and `Davenport`.
```[74] load("katsura")\$
[89] katsura(5);
[u0+2*u4+2*u3+2*u2+2*u1+2*u5-1,2*u4*u0-u4+2*u1*u3+u2^2+2*u5*u1,
2*u3*u0+2*u1*u4-u3+(2*u1+2*u5)*u2,2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3-u2+u1^2,
2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2-u1,
u0^2-u0+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[90] hkatsura(5);
[-t+u0+2*u4+2*u3+2*u2+2*u1+2*u5,
-u4*t+2*u4*u0+2*u1*u3+u2^2+2*u5*u1,-u3*t+2*u3*u0+2*u1*u4+(2*u1+2*u5)*u2,
-u2*t+2*u2*u0+2*u2*u4+(2*u1+2*u5)*u3+u1^2,
-u1*t+2*u1*u0+(2*u3+2*u5)*u4+2*u2*u3+2*u1*u2,
-u0*t+u0^2+2*u4^2+2*u3^2+2*u2^2+2*u1^2+2*u5^2]
[91] cyclic(6);
[c5*c4*c3*c2*c1*c0-1,
((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
[92] hcyclic(6);
[-c^6+c5*c4*c3*c2*c1*c0,
((((c4+c5)*c3+c5*c4)*c2+c5*c4*c3)*c1+c5*c4*c3*c2)*c0+c5*c4*c3*c2*c1,
(((c3+c5)*c2+c5*c4)*c1+c5*c4*c3)*c0+c4*c3*c2*c1+c5*c4*c3*c2,
((c2+c5)*c1+c5*c4)*c0+c3*c2*c1+c4*c3*c2+c5*c4*c3,
(c1+c5)*c0+c2*c1+c3*c2+c4*c3+c5*c4,c0+c1+c2+c3+c4+c5]
```
References
section `dp_dtop`.