Go to the first, previous, next, last section, table of contents.


sm1.gb

sm1.gb([f,v,w]|proc=p,sorted=q,dehomogenize=r)
:: v 上の微分作用素環において f のグレブナ基底を計算する.
sm1.gb_d([f,v,w]|proc=p)
:: v 上の微分作用素環において f のグレブナ基底を計算する. 結果を分散多項式のリストで戻す.
return
リスト
p, q, r
f, v, w
リスト
[293] sm1.gb([[x*dx+y*dy-1,x*y*dx*dy-2],[x,y]]);
[[x*dx+y*dy-1,y^2*dy^2+2],[x*dx,y^2*dy^2]]

上の例において,

[294] sm1.gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]);
[[dx+dy^3-4*dy,-dy^4+4*dy^2-1],[dx,-dy^4]]

上の例において二つのモノミアル

[294] F=sm1.gb([[dx^2+dy^2-4,dx*dy-1],[x,y],[[dx,50,dy,2,x,1]]]|sorted=1);
      map(print,F[2][0])$
      map(print,F[2][1])$
[595]
   sm1.gb([["dx*(x*dx +y*dy-2)-1","dy*(x*dx + y*dy -2)-1"],
             [x,y],[[dx,1,x,-1],[dy,1]]]);

[[x*dx^2+(y*dy-h^2)*dx-h^3,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx-h^3*dy],
 [x*dx^2+(y*dy-h^2)*dx,x*dy*dx+y*dy^2-h^2*dy-h^3,h^3*dx]]

[596]
   sm1.gb_d([["dx (x dx +y dy-2)-1","dy (x dx + y dy -2)-1"],
             "x,y",[[dx,1,x,-1],[dy,1]]]);
[[[e0,x,y,H,E,dx,dy,h],
 [[0,-1,0,0,0,1,0,0],[0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0],
  [0,1,1,1,1,1,1,0],[0,0,0,0,0,0,-1,0],[0,0,0,0,0,-1,0,0],
  [0,0,0,0,-1,0,0,0],[0,0,0,-1,0,0,0,0],[0,0,-1,0,0,0,0,0],
  [0,0,0,0,0,0,0,1]]],
[[(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>+(-1)*
<<0,0,0,0,0,0,0,3>>,(1)*<<0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0
,0,0,0,1,2>>+(-1)*<<0,0,0,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>+(-1)*<<0,0,0,0,0,0
,1,3>>],
 [(1)*<<0,0,1,0,0,1,1,0>>+(1)*<<0,1,0,0,0,2,0,0>>+(-1)*<<0,0,0,0,0,1,0,2>>,(1)*<
<0,0,1,0,0,0,2,0>>+(1)*<<0,1,0,0,0,1,1,0>>+(-1)*<<0,0,0,0,0,0,1,2>>+(-1)*<<0,0,0
,0,0,0,0,3>>,(1)*<<0,0,0,0,0,1,0,3>>]]]
参照
sm1.reduction, sm1.rat_to_p


Go to the first, previous, next, last section, table of contents.