f_res.matrixdecomp
[ (UC の monomial の配列),(行列),(Vars の monomial の配列) ]
という形で,それぞれsigma_P = V D_P W の V, D_P, W を表す.
[0] F0 = a1*x + a2*y + a3$ [1] F1 = b1*x + b2*y + b3$ [2] F2 = c1*x^2 + c2*y^2 + c3 + c4*x*y + c5*x + c6*y$ [3] D = f_res.dixonpolynomial( [F0,F1,F2], [x,y] )$ [4] M = f_res.matrixdecomp( D[0], D[1], [x,y] ); [[ 1 _1 _0 ],[ c1*b3*a2-c1*b2*a3 -c2*b3*a1+c4*b3*a2+(c2*b1-c4*b2)*a3 (c3*b2-c6* b3)*a1+(-c3*b1+c5*b3)*a2+(c6*b1-c5*b2)*a3 ] [ 0 -c2*b2*a1+c2*b1*a2 -c2*b3*a1+c2*b1*a3 ] [ -c1*b2*a1+c1*b1*a2 -c4*b2*a1+c4*b1*a2 -c4*b3*a1+c1*b3*a2+(c4*b1-c1*b2)*a3 ],[ x y 1 ]] [5] V = M[0]*M[1]$ [6] D[0] == V[0]*M[2][0]+V[1]*M[2][1]+V[2]*M[2][2]; 1
Go to the first, previous, next, last section, table of contents.