Go to the first, previous, next, last section, table of contents.


f_res.mres, f_res.mresM

f_res.mres(Equations, Vars )
:: Multipolynomial resultant の多項式倍を返す
f_res.mresM(Equations, Vars )
:: 行列式が f_res.mres が返す値になるような行列を返す
return
f_res.mres
多項式もしくは 0
f_res.mresM
行列
Equaitons
多項式のリスト
Vars
変数のリスト.
オプション
rsc
任意
rowidx
配列
colidx
配列
p
素数
sub
リスト
[0] F0 = a1*x + a2*y + a3$
[1] F1 = b1*x + b2*y + b3$
[2] F2 = c1*x^2 + c2*y^2 + c3 + c4*x*y + c5*x + c6*y$
[3] f_res.mresM( [F0,F1,F2], [x,y] );
[ 0 0 0 a2 a3 a1 ]
[ 0 a2 a3 0 a1 0 ]
[ a2 a3 0 a1 0 0 ]
[ 0 b2 b3 0 b1 0 ]
[ b2 b3 0 b1 0 0 ]
[ c2 c6 c3 c4 c5 c1 ]
[4] R = f_res.mres( [F0,F1,F2], [x,y] );
(-c3*b2^2+c6*b3*b2-c2*b3^2)*a1^3+(((2*c3*b2-c6*b3)*b1-c5*b3*b2+c4*b3^2)*a2+((-c
6*b2+2*c2*b3)*b1+c5*b2^2-c4*b3*b2)*a3)*a1^2+((-c3*b1^2+c5*b3*b1-c1*b3^2)*a2^2+(
c6*b1^2+(-c5*b2-c4*b3)*b1+2*c1*b3*b2)*a3*a2+(-c2*b1^2+c4*b2*b1-c1*b2^2)*a3^2)*a
1
[5] fctr( R );
[[-1,1],[a1,1],[(c3*b2^2-c6*b3*b2+c2*b3^2)*a1^2+(((-2*c3*b2+c6*b3)*b1+c5*b3*b2-
c4*b3^2)*a2+((c6*b2-2*c2*b3)*b1-c5*b2^2+c4*b3*b2)*a3)*a1+(c3*b1^2-c5*b3*b1+c1*b
3^2)*a2^2+(-c6*b1^2+(c5*b2+c4*b3)*b1-2*c1*b3*b2)*a3*a2+(c2*b1^2-c4*b2*b1+c1*b2^
2)*a3^2,1]]


Go to the first, previous, next, last section, table of contents.