Go to the first, previous, next, last section, table of contents.


parametrize

parametrize(F)
:: 有理曲線F=0 をパラメトライズする多項式の組を返す。
return
リスト
F
有理曲線の定義多項式(変数x,y,z の斉次多項式)
[1] parametrize(x^4+(2*y^2-z^2)*x^2+y^4+z^2*y^2);
[-t^3-t,t^3-t,t^4+1,(-x^2-y^2)/(z*x+z*y)]
[2] parametrize((x^2+y^2)^3-4*x^2*y^2*z^2);
heuristic2 failed...
heuristic3 succeed
[32256*t^6-133120*t^5-129024*t^4+1064960*t^3-516096*t^2
-2129920*t+2064384,-127008*t^6+1048320*t^5-2671232*t^4
+10684928*t^2-16773120*t+8128512,274625*t^6-3194100*t^5
+15678780*t^4-41555808*t^3+62715120*t^2-51105600*t+17576000,
(-126*x^4+1040*y*x^3-382*y^2*x^2+1040*y^3*x-256*y^4)
/(-65*x^4+520*y*x^3+(-65*y^2-32*z*y)*x^2+(520*y^3+256*z*y^2)*x)]
[3] parametrize(22*x^2-10*y^2+z^2+5*x*y+12*y*x-z*x);
[(220*#6-10)*t^2+(-22*#6+1),(374*#6-17)*t^2+(-22*#6-43)*t,
(220*#6+210)*t^2+(-374*#6+17)*t+22,(-y)/((22*#6-1)*x+z)]
参照
section genus


Go to the first, previous, next, last section, table of contents.