Let
be a ring and
be elements of
.
The left
-module
%% syz.sm1
[ (x,y) ring_of_differential_operators
[[(Dx) 1 (Dy) 1]] weight_vector
0
] define_ring
[ (x Dx + y Dy).
(Dx^2 + Dy^2).
] /ff set
ff { [[(h). (1).]] replace homogenize} map /ff2 set
[ff2 [(needBack) (needSyz)]] groebner /ans set ;
(Syzygies are ...) message
ans 2 get ::
The 0-th element of ans is the Gröbner basis.
The 1st element of ans is the transformation matrix from the input
to the Gröbner basis.
The 2nd element of ans is a set of generators of the syzygies
of the input.