Next: gt
Up: Primitive Operators
Previous: goto
<< [[f1 ... fn] [options]] groebner
[[g1 ... gm] backward-transformation syzygy]>>
poly f1, ..., fn; poly g1, ..., gm;
optional return value: matrix of poly backward-transformation, syzygy;
Computation of the Groebner basis of f1,...,fn. The basis is {g1,...,gm}.
Options: << (needBack), (needSyz), (countDown) number (StopDegree) number, (forceReduction)>>
Flags:<< [(ReduceLowerTerms) 1] system_variable >>
<< [(UseCriterion1) 0] system_variable >>
<< [(UseCriterion2B) 0] system_variable >>
<< [(Sugar) 0] system_variable >>
<< [(Homogenize) 1] system_variable >>
<< [(CheckHomogenization) 1] system_variable >>
<< [(Statistics) 1] system_variable >>
<< [(KanGBmessage) 1] system_variable >>
<< [(Verbose) 0] system_variable >>
Example: [(x0,x1) ring_of_polynomials 0] define_ring
[(x0^2+x1^2-h^2). (x0 x1 -4 h^2).] /ff set ;
[ff] groebner /gg set ;
gg ::
cf. homogenize, groebner_sugar, define_ring,
ring_of_polynomials, ring_of_differential_operators.
Nobuki Takayama
平成13年8月23日