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Introduction

Let Mys = {(zi;)]z; € C,1 <1 <2,1 <) <5} be the variety of 2 x 5 matrices of
complex numbers which is biholomorphic to the 10 dimensional complex space C!'°. The
group S of all permutations of five letters acts naturally on M 5:

Mg 3z = (2i;) = 2° = (Zig(j)) € Mas, o€ Ss.

The system of hypergeometric equations Fs s(a) (see [G1], [GG1], [GG2] or (3.al)
~ (3.a3)) i1s a system of differential equations defined on M, 5 and the group Ss acts on
the space of solutions of the system FEjs(a). It is known that the system E;5(«) has a
fundamental set of solutions corresponding to each regular triangulation of the prism (see
[GZK], [BFS] or Proposition 3.4). Let ¥ be a fundamental set of solutions obtained from
a regular triangulation of the prism. Then the function ¥7, ¢ € S5, is also a solution of
the system Es 5(a) (Proposition 3.1). The series expansion of the function ¥ is given in
(4.290) and (4.a91) explicitly.

We define branch cuts on the variety My 5 (see Definition 2.2). We can uniquely
specify a branch of the analytic continuations of the function ¥ outside of the cuts. Let,
q be a point of Ms 5 that is not on the branch cuts and U a sufficiently small simply
connected neighborhood of the point ¢. Since the solutions ¥ and U7 are fundamental
sets of solutions, there exists a matrix C'(o, ¢, «) that satisfies the relation

¥ =C(o,q,0)P? onU.
The purpose of this paper is to give an explicit expression of the connection matrix
C(o,q,a).

In order to find the matrix, we consider a regular graph of 15 vertices which can
be obtained from a blowing-up space considered in Section 1 and show that the matrix
C(o,q, ) can be decomposed into the connection matrices between the solutions ¥ and
ss) (45) € Ss, and between the solutions ¥ and U7, 7 € I, where I is the subgroup

This worl was presented at RIMS (of Kyoto University) during the symposium “The
asymptotic and alien space analysis” held from May 27 until May 30.



9 q =
of Sg generated by (}) ”1‘ g j g) and (13) . We derive a connection matrix between
)

the solutions ¥ and ¥*%), (45) € Ss, in Section 6 (Theorem 6.1) by using a uniqueness
of a solution of a partial differential equation with regular singularity. In Section 7, we
derive connection matrices between the functions ¥ and ¥7, 7 € I (Theorem 7.3). The
relation between ¥ and ¥ can be considered as a generalization of IKummer’s relations
for the Gauss hypergeometric function.

Acknowledgement. The authors express their gratitude to Professors L. Billera, K. Okubo,
T. Sasaki, B. Strumfels and M. Yoshida for valuable discussions.

1. Geometry of a blowing-up space

Let (& : & : &) be a system of homogeneous coordinates of the two-dimensional
projective space P2, Put

= {(EL E} 1 ¢ E P? | {1!5‘2&;;(@2 = fs)(f; = 51)(51 e {‘:2} = 0}

and X' = P?\ S. Consider the algebraic variety

={((&1: & : &)(m 72 1 M), (G : (22 G5)) € PP x P2 x P? |
Eim = Eana = Eama, E1C €+ E3CG =0, G+ + (=0}

and the projection
7:2Z3(6n,0)— € e P2

Prorosrtion 1.1.

(1) The space ' (X') s b'."hofomm'phér: to X',

(2) The complement Z \ 7~ 1(X') is a union of 10 irreducible curves that are normally
crossing ( see figure 1.1. )

Put
g1 : P? S(61:é:6) (1/€:1)& 1 1)) e P?
g2: PP (66 &) (66— &1 & — &) € PP
g3 P23 (&1 : 6 6) = (20611 63) € P2
ge P23 (& 165 : 6) - (& : €3 : &) € P2,

The morphisms g; are birational on P? and the restrictions of g; to X' are biholomorphic
maps. The maps g;| , are also denoted by g;. It is well known (see [Ter2; Theorem 1]) that
Aut(X’) is gener ated by ¢; and isomorphic to the permutation group Ss. The isomorphism
is given by

givrrs; = (1,i+1) € Sg.

Lemma 1.2 There exist holomorphic transformations t; (i = 1,...,4) of the blowing
up space Z such that
poti=giop (i=1,...,4)
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where p is the restriction of the projection = to w1 (X").

Figure 1.1

N/

{14}

The holomorphic transformations ¢; of Z induce permutations of the ten curves in Z.
In order to see the action of Sg, we name each of the ten curves a pair of integers in the

following way.

&1
§2
€1
{1
&1
)
&3
&1
£
&2

=6 =8, =N =13

=& =m =0
=L=n=0
=& =m=0
=1 = =1
=m=un3 =0
=ni =mp=0
=525 Th =g
=&, m=m
=83, 2 =13

{1,2}
{1,3}
{1,4}
{1,5}
{2,3}
{2,4}
{2,5}
{3,4}
{3,5}
{4,5}.



It is convenient to put {¢,7} = {j,1},if 7 > .

ProrosiTion 1.3.

(1) Z\r (XY~ |J (i}

1<i<j<h

(2) t({i,7}) = {i%,77} = {o(i),0(5)} where o = (k,k+ 1) € Sp.

REMARK. There are two conventions to write the product of two elements of the permu-
tation group. In this paper, the product is defined by

where

REMARK. Let p and p' be points of 15 normally crossing points. We assume that the
points p and p' are on a curve {¢,7} and p # p’. In the case, there exist numbers r, s,
such that

p={sj}N{r s} = {i,7} 0 {rt}.

9 = 2 3 4 5

Therefore both of the substitutions (1 - 3 % O) and (1 3 2 O) transform
O S J r ¢ t s

the points {1,3} N {2,5} and {1,3} N {2,4} into the points p and p'.

Let us introduce 120(= |Ss|) local coordinate systems on the blowing up space Z
to use in later sections. The system of functions w = £2/€1,v = ns/y; is a system of
local coordinates of Z defined in a neighborhood of the point {1,3} N {2,5}. We define
automorphisms {7, |¢ € S5} on Z inductively by the relations

Tor =Ty 0T
and
T,, =t;,, si=(1,1+1)€Ss.
The automorphisms T, are well-defined, i.e. if ¢ = [[}Z, s;, = [[32, sj,, then Ty, o---0
s;. =T, o0--0T,. . Notice that we have
my J1 Jmo

(To,)" " =Ty,
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and

Put

Notice that

Put @ = w = €3/ and y = wv = €3/&. The functions x and y defined in a neighborhood

of the point {2,3} N {2,5} have unique extensions on 7~

xr and y

Put

01 = |€16263]° Im(f) 61) (

£
= Im(|&1*€2&5 — 1636 ]* + |&3%61€

= Im (wv — v — |v[*w)
2 = Im(& — &)(6
3 = Imf_gfg =Imwv
By = Imé €5 = Imwo
s = Imé& &y = Imw,

RS
3

(X') which are also denoted by

o)

- f_z) =Im (1 —wov)(1l — @)

Uf ={£€P? | epi(€) >0}, e==.

THEOREM 1.1.

T:l: +
TS{(Di _U:-E-H

Tsi(.["r‘_;.k) = I"Tz'_-.
T,.(U5) = Uy,

T, (Uf)=U;
T, (Us") = Uy,
(2) The intersection UT* M -

5

(1) The permutation group Sy acts on the set of US as follows.

i =1,2.8.4
fe= 2 8.4,
i =34,
= 1y,
i=1,2

i=1,2,3.

-NUS® (e; = =) is simply connected or empty.



(3) The twenty open sets given below are disjoint and the unton of them are open dense in

X

(—5,—-4,-3,-2,-1),(—5,—4,-3,-2,1),(- 5, —4,-3,1,2 )( ,—4,—2,-1,3),
(—5,-4,-1,2,3),(—5,—-4,1,2,3),(— 5 -3,-2,1,4),(-5, -2, 1 . 3,4),
(u57%27153 4)( 5717*‘:3 4)( —4,-3,-2,—-1,5 ) ([~ =3, — 12, )
(—4,=3,1,2,5), (4 —1.,2,3,5), (~3,~2,~1,4,5), (~3,~2,1,4,5),
(—3,1,2,4,6),(—2,—1,3,4,5),(-1,2,8,4,5),(1,2,8.4, )

where

(Bhyee s 85) = 1 (W8] | 0. 50, 1<% < 5]
and o—p == —pE, k>0.

As for a proof and a detailed study of the twenty simply connected domains, see [Sek?2;
Theorem 2.3].

The set of the twenty simply connected domains is denoted by Dag.

REMARK. Another study of a blowing up space is given in [Terl].



2. A map from M; ; to X'
Put
Mys :i={z|z= (:n ilz :13 :M :15)1 z;; € C},
Z21 222 24 225

.’7\/_[.—3’5 = {1 S ﬂf.’[-g,ﬂ [!?] 7& 0,V % ]}

We define a map from M), ; to 77! (X') as follows.
(2.al) pre(€,9,{)eZ
where r ; , ‘
¢ = [41][32][51], & = [42][31][51], &5 = [52][31][41],
o= RAIRSI], g = (1423][25], o = [15][23][24],
¢ = [18][45], ¢ =[14][33], ¢y = [15][34].

Note that we have Pliicker’s relation:
Aadsl[ Mg = A dsl e |+ M dal A | = 0, Ay Ae, Ag i € C2.
We can show that the map (2.al) is well-defined by utilizing Pliicker’s relation.

The general linear group GL(2,C) and (C*)® act on M)}, 5 from the left-hand side and
the right-hand side respectively. The equivalence relation of the action above is denoted
by ~. Notice that we have

plgzh) = p(2)
where
g € GL(2,C), h e diag(hy,..., hs),h; € C*,

The permutation group S5 induces a set of automorphisms {S, | € S} of M) ; as
follows.
S 11’1;;,5 2z = (zij) — (zig(j)) & ﬂf;}j, o € Sg.
If we put
3= 802 and J=85:{8")

then we have
= —_. e ]
zij = Zijo and Zyj = Zj;..

Changing j into j7, we have Z;jo = Z];.., which yields z;; = Zj;,.. We have shown that
the set of the automorphisms satisfies

Sor = Sy 8.
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PropPosITION 2.1. ( [G1; §6], [MSY; Part IL, 1-3] ) (1) The space My 5/ ~ s
biholomorphic to m~1(X') ~ X'. The isomorphism is given by ¢
(2)
Mo/~ 5w
AU

Mys/~ = n7'(X)

where o € Sx.

ReMARK. We give a table of the functions p;0p,wow,vo e, (wr)op, (1 —w)op, (1 —
wv)ow, (1 —w)/(1—wv))oe.

. [53][42]

w10 =Im 43](52]"

9 0 Im [21]]55]

: [51][43]’

o = 111[52“41]

pa o =Imporep

_ . [52][31]

040 1111[32“51}

o [42][81]

V5 0 Y Im[ 32)[41]"
ey 121034
wop = Eﬂ% A [izl[;f]’
ol (1-w)op = LA
g -
() = gy (o) o2 = el
w' =wv, v =1/v il = w)? 0= [251[34]
W =wy, v =1/v, ( 1 — wo ) ? = 12435

DermrrioN 2.1, Given a point p € M) . and an open set 2 C 771 (X"), we put

Sp)={s:Q— Mr.i,s | s is a holomorphic function, s(p(p)) = p, 0 s = idg}.

REMARK. There exists a function 6(g) that satisfies the following condition. If

|[A—B||<e,A~Band A,B € My,

8



then there exist ¢ € GL(2,C) and h € diag((C*)®) such that

gBh = A,|lg— E|| < é(¢) and ||h — E|| < 8(¢)

We define branch cuts on M . and denote the points which are outside of the branch
cuts by My ;.

DeErFINITION 2.2.

[23][kC] L] (k€]
# 0,Im # 0,Im 2= 1,

k511i0) k] [24]

Im[ij] # 0,Im[kj] # 0,Im[kf] # 0,Im[:¢] #£ 0,

for all {i,7,k,£} C {1,2,3,4,5} where i, j, k, ¢ are different numbers.}

Mys={z€Mj,|Im



3. The system of hypergeometric equations £ 5

Let a; (1 =1,...,n) be complex numbers that satisfy

mn
E a;=n—=k%
3=1

and « be (a1,...,a,). Let z = (z;) be a k xn matrix. The system of differential equations

k

a
(8.a1) Zz,-p?—F:(_a,]—l)E p=1l...,m
=i “4p
n
0 ) .
(3.02) Zz,-,,aﬁ_ F=—65F, i,j=1,....,k
p=1 =Jp
2 2
(3.a3) i F 4 B B = Lo s oy BEE Loy sl

02,0254 02i40%;5p

is called the system of hypergeometric equations Ey (o) ([GG1; §1.1]).

ProrosiTION 3.1. ([G1; §4] ) If a function F(a;z) is o solution of the system
Eyn(a), then the function F(a%;27) is a solution of Ey n(a) where 27 = (2i0(;)), a7 =
(@p(1)s: -+ 5 O0a(n)) ond @ € Sy,

Put
1 110 00
000 111
y=|1 @ 0 1 @ D
010 010
0 01 0 01
The system of differential equations
213013 ity
314014 —a'l
(3.a4) o mgm G=|ew-1|@ 6y==2
Z23023 Dz
ay — 1 t
#2402, —_—
32.5325 )
97 o? L
(3.a5) G G, 1,5 €{1,2}, p,q € {3,4,5}

D50 825y Oy 02y

10



is denoted by Fs 5(a; J), J = {1,2} ([GG1; §1.1]). The system Es 5(ev; J) is the restriction

0 * =

; 1 * :
of the system £, 5(a) on the subvariety (U 3 ) :k) ([GG1; §1.1]).

Proposition 3.2.  [GG2; §3] (1) The dimension of the solution space of Eys(a; J) is
3. The locus of the singularity is

11 2;7(34][35][45] = 0.
56{172}1.:';6{3’;1!5}
(2) The dimension of the solution space of Ey5(a) is 3. The locus of the singularity is

II ti=o.

1<i<;i<5

Prorosition 3.3.  [GGL; Proposition 1.1] Let F be a solution of the system Es 5(a).

We have | 1 0 [Lf:%[ [Lll“% {%]l
F(a;-3)={13lqlp(a;(0 1 b e g )

[12] [12] [12]

COROLLARY 3.3. Let G be a solution of the system Ess5(a; J). The funetion
a1=1s( .. [ [H2 12 12
12] [12] [12]

15 @ solution of the system Ey 5(a).

Let us proceed on a construction of series solutions of the system of hypergeometric
equations Fs s5(er). Before accomplishing this purpose, we specify a branch of the power
function v*. Let p(y;v) be the single-valued holomorphic function on the domain C \ R«
such that limy_.o p(p; & +1y) = €*1°8% on 2 > 0. The following Lemma is given in [Sek1]

LEMMaA 3.1,

c—}riﬂ-p(#; U) if Imv >0
(1) HBVIS {

- ™ p(psv)  if Tmo < 0.

11



(2) We have

S—2mip

€
plp; wv) =

p(p;w)p(ps;v)  if Imw > 0,Imw > 0,Imwv <0,

A (e w)p(psv)  if Imw < 0,Imw < 0, Imwv > 0.

In other cases, we have

plpswo) = p(p; w)p(p;v).

We note that the system Fs 5(«v; J) can be written as follows.

D15 111000 —ay
- 000 1 1 1 —ay

(3.a6) X - G=gG, =11 0 0 1 0 0], B=}oas—1
00100 10 oy — 1

Vi 001001 a5 — 1

i g\ a N\
5 - Cerv © = — — a
(3.a7) GG =0, a€KerxnZ% ¢u=[] (Ot*) 41<0 (5%:)

a; >0

where

Ul = 213,02 = 214, V3 = Z15,V4 = Z23,V5 = 294,V = 2Z925.

[GZK] showed that the regular triangulations of a set of points determined by the matrix
x yield solutions of (3.a6) and (3.a7).

Figure 3.1
We compute regular triangulations of the prism by the method of [BFS; §4] (see Figure
3.f1) and derive solutions of the system (3.a6) and ( 3.a7). We can obtain solutions of the

system Ey 5(a) by virtue of Corollary 3.3. Carrying out these computations, we obtain the
following result.

12



Put
F(’)a" Zr}/?_.l[]_)

X Z HP(!¢‘|(nU /HF(’}z+C—I—1)

(ERerynZt i=1

where
f = {lignn s b Js
7 :(’}"1&"'175)1
uyp = [13] wy = [14] w3 = [15]
ug = [23] us =[24] wue = [25].
Put ,
F(":"zz? 3) F(723; 5_) 3
U= | F(ys;z) |, U= F(ywsz2) | = T where (45) € Sp.
F(’Y!icl; 3) F(";_M, 3)
ProprosITION 3.4. ( [GZK] ) The functions U and V' are solutions of the system of

hypergeometric equations Ey s(«) where the vector vi; is a unique solution of the linear
equation

sy
xv=08=|as—1
Vi — 1
s — 1
such that
=7 =U
We explicitly give the vectors 7;;.
—a ag — 1 asz — 1
0 ay — 1 -y — g F 1
o 0 | mta—1 - 0
123 oy ‘f" Qs — 1 sy J45 h_ 0 s /34 — O
& — 1 0 —aQ — &5 + 1
oy — 1 — g s — 1
oz — 1 az — 1
(4] + a4 — 1 0
. L’l‘:,u]_ - —G:l—a'3+1
Ta6 = 0 y Y24 = 0
— vy ay — 1
0 —vg — g + 1

13



4. The system of differential equations for the Appell function £}

The function

P ( o —a+1 —as+1. :J)

o1 oy

_ Z (a1)k4n(—as + r(—as + 1)n oty
k=0 (.11 + ad)k-i—n ) (1)11
is called the Appell function Fy which is denoted by fy(a;2,y) in the sequel ( [AK]).

The system of differential equations for the Appell function Fy can be written as
follows.

(4.1) [0:(0: + 6y + 1 +as —1)—2(0p + 6y + 1) —au+1)]f =0
(4.2) [By(0: + 6y + 1 + a3 —1) —y(0s + 0y +c1)(0y —as +1)|f =0
(4.3) [(z — 4)8:8, — (—as + 1) + (—ay + 1)8,]f =0

where 0, = 20,, #, = y9, and E‘?=1 a; = 3.

The system of equations above is denoted by A(«).

Put
(4.a90)
Jola; w,wv) = Z wk(-wv)”/l"(l + k)I(1 + n)c"‘ 4
k,n=0
A =T(aq + @z +k+n)T(1 — a1 — k — n)T(ay — k)(as — n)
Filogw,v) = Z (wv)* v [T(1 + &)I(1 + n)ey "”
k,n=0
ch? =T(ea +as + k+n)T(1 — ag — k —n)l(as — k)T(as — n)
gi(azw,v) = Y wko™ [T(1+ k)D(1 +n)chy
kyn=0

4 =T2—a;—az+k—n)T(az —&)(as —n)[(2— a2 —as +n—k)

and

fola;w'v’ 0" = Z (w'v" Yo' JT(1 + E)T(1 + n)ck?

k,n=0
ch? = T(ag + ag +k +n)T(1 — ag — k — n)(es — k)T(as — n)
ga(a;w',v") = Z w'k’:,.'m/l"(:l + E)T(1 4 n)ckn
k,n=0

cfz‘f =T2—-a1—az+k—n)l(as —k)(ay —n)I'(2 — a2 —aq +n — k).

14



Note that we have
Folasw,wv) = T(a + as)I(1 — ay)D(ay W(as) fola;w, we).
We have the following fundamental system of solutions of the equations A(«).

Prorosition 4.1.
(1) Assume ay + az, o0 + a5 € Z. The system of functions

{20y 0
® = | p(1l—a; —ag;w)p(—1+ az + as;v)fi1{a;wu, v)
Pl —ay —az;w)gr(o;w,v)

is o fundamental system of solutions of A(a) at the point {1,3} N {2,5} where w = = and
Y = Bl
(2) Assume oy + a3, a9 + ay € Z. The system of functions
folasw'v' wh)
¢ = | p(1— a1 —az;wv)p(—1+as;1/0") fala;w'v',v")
p(l —ay — az;w'v')p(l — ay — a; l/v')gg(af; w',v')

18 @ fundamental system of solutions of A(«r) at the point {1.3}N{2,4} where w' = wv =y
gmg ' = 1l = gl

We can easily prove Proposition 4.1 by showing that each element of ® and @' satisfies
the system A(a) and we can find these expressions by Theorem 4.1 and the expressions of
the functions ¥ and ¥’ given in Proposition 3.4. Note that we can also use the method of
[Takl; section 2| to find them.

The function fy(o;w,wv) defines a holomorphic function on the domain:

Dy = {(w,v) € C* | |w), |v| << 1}.

LevMa 4.1. The domain UJ N Uf NUZ" N Dy (0,0, 0" ==+ ) is simply connected.

Since the domain U§ NUY NUZ" (0,0, 0" = %) is simply connected and has a simply
connected intersection with the domain Dy, there is a unique holomorphic function on
the domain Ug NUZ NUZ" of which restriction to U NU NUZ" N Dy coincides with
fola;w,wv). In this way, we have a holomorphic function defined on the domain

|| D, Ds={UsnUf nU¢" |o,0',0" = £}
DeDy

of which powerseries expansion around the point w = v = 0 is fy(e; w,wv). We also denote
the holomorphic function thus obtained fo(a;w,wv). Restricting the function fy to each

15



of the twenty simply connected domains § € Dy, we have a holomorphic function on ¢ that
is also denoted by fy. Similarly, we have unique extensions of the functions f; and g; to
each of the eight simply connected domains Dy and to each of the twenty simply connected
domains Doy and we have unique extensions of the fundamental systems of solutions @
and ®'. If we need to specify the domain of the definitions, we often denote the extensions
of the functions ® and @' to the domain § by ®5 and ®§ where 6 € Dyg.

Now, we become to be able to specify a branch of the function ¥ at a point of My’ 5. We
have specified the branch of the functions f;, ¢; on the simply connected domain 6 € Day.
Hence, the values of the functions

fiop, giop

are uniquely specified at any point of My ;. Writing the function ¥ (resp. ¥’ ) in terms
of f; and g;, we can specify a branch of tho function ¥ (resp. ¥’ ) at any point of My
Indeed, the functions ¥ and ¥’ can be written as follows.

[12]o1tea—t[1g]er+aa—tJaaL{15]as =1 23]~ (o @, W0
U = [12]21te2—1[15]*2[23]|*s~1[24] ¥4~ 1 [25]2t s~ f) (a; D, D)
[12]a1+ag~1 [14]-1:2—0‘5-{—1 [15105—1 [23](13—-_[ [24]—01 —a3+19’1(ﬂ, L—,, [_.)

(4:6[91) , [19]a1+ao—l[13]&14-0'4—] [14]&.4—1[10]05.-—[{-)3]—&1 fo((l I',Z' ﬁ —:!)
b = [12]aea " [14]"#2[25] %7 [25) 20 [24] 72+ fola; D, 0)
[12]vFes =1 [15] 2ot 1)1 [23]001 [25] -1 —ast gy (s, ')
where {24] 13]
Ww=wop= (14][23]
N - L
[15](24]
__ [13][20]
123](15]

Here, we do not use the notation p(;#*) to avoid long expressions, but note that we had
specified a branch of powerfunction w®. For example, the function [12]*17%2~1 ahove
means p(a; + az — 1;[12]).

Remark. We have
TS = @' (45) € S
and _
[32]@sta2=1[3] )t —1[34]as—1[35]a5=1[9]]—aa f(13)
P = [32) w21 [35] ez 21] o~ [24) 5] 1)
[32]&34-0'2—1 [34}—(.\2—@5-}-1 [351055*1 [21](\[ -1 [24]—& 5_al-|—[q(13)
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Let us study a correspondence between solutions of the system Ej 5(a) and the system

A(a). Pus
1N = [12]01-{-“2_1[13]0'1'!'“3_1{14]0"1—l[15](15—1[23]—0:1.

THEOREM 4.1.  (c.f. [Sasl; §3])
(1) Suppose that a point z € My ; satisfies the condition:
(4.c1) The point p(z) is sufficiently close to the point {1,3} N {2,5}.
Let Q be a sufficiently small neighborhood of the point p(z). Then there exists a unique

diagonal matriz A that satisfies

(T/n)os=Ad on
where

s €S(Q,z)

and the matriz A does not depend on the choice of the section s.

(2) Suppose z is a point of My s and let § be a sufficiently small neighborhood of the
point p(z). If a function F' on My 5 is a solution of the system Es 5(cx), then the function
(F/n)os is a solution of the system A{a) where

5€8(Q,z)

and we have

(F/n)os=(F[n)os fors,s' € S(Q,2).

Proof of (1). The i-th rows of ¥ and ® are denoted by ¥; and ®; respectively. Since
we have

o [24)13] [13]25)
‘Ijl/f? —f(](Ct, [14][23]! [23“15]J’
[24](13] i) [13][25] n
[14][231 0§ = 62/6] =uw a'nd ]:23][15] s = 63/61 = ’IUD,

we obtain

{‘I’-]/'f}) 0, 8= (I)l.
Next, let us show that ({(¥y/5) 0 s)/®, is a constant on €. Since we have
& B [12]a1+a2—1[15]—c\«3[23]a3—1[24]&,r'][25]a2+a‘5—1
n  [12]etee—1[13]a+aa—1[14]aa—1[15]as—1[23]~ fila; (we) op,v0p)
[93](\'1-{-0'3—1 [14]0’1+a3—] [14]&2-'-(1'5—1[25]&‘2-’-&'5—]
A [

13]o1tas—1[24]artas—1[94]@rtas—1[]5|artas—1 Fi(a; (wv) o p,v09),
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there exists a constant ¢ such that

(psnuu)“““”‘l(U4M2m)“2+“"

[13][24] [24][15]
[23]0‘1 +ag—1 [14]01 +az—1 [14]02-}-0'5—] [25]02-}-0'5—1
~[18]o+as—1[24]artas—1]24]artas—1[]5lartas—]

around the point z by virtue of Lemma 3.1. Therefore we have
(Ta/n)os =c-plag +az — L0 plag + as — 1;0) fi (e wo, ).

Similarly, we can show that the function (¥3/n)o /®5 is a constant. |

Proof of (2). Since the function ¥ is a fundamental set of solutions of the system
Ey5(a), the function F' can be written as a linear combination of ¥; (i = 1,2,3). Then

(2) follows from (1). |

We will study a symmetry of the system A(«) through the correspondence between
E; 5(a) and A(a).
Let W be the set of free words generated by s; (1 = 1,...,4).

DerFiNITION 4.1.  Given a word s € W, we define a function m, inductively as follows.

ms, = plag — L2)plas — 1;y),
gy = 1,

Mg = pl=043 B);

tits, = 1,

g =5 ¥ |

where

Flagzy) = flof 1wy Wety)s & =1 in Ss

Note that the function p(a;w) is undefined on w < 0. We can see that the functions
Mg, (We, Weve) and my,(we, w,v,) have no undefined point on & € Dy for all o € Sy by
using a list of w, and v,. Then we have the following Lemma.

LeMmMmA 4.2. Gien a word s € W and a domain 6 € Doy, the function m, has no
undefined point on 6.

REMARK. Let s and s be words in W. The identity s = s’ in Sg does not always imply
ms = my. For example, we have s183 = s351 in Si. However we have

Mgy sy = P(—or;2)p(—as + 1;2)plas — 1;y/z)

= e 2™ p(ay + ay — 1;2)p(as — 1;y)
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and _ ‘
Msgs, = plag — Lia)plas — 1 y)p(az;z)
= plaz + a4 — 1;2)p(as — 1;y)
on
Iml/z > 0,Imy > 0 and Imy/z < 0.

Conjecture

ProposiTION 4.2.  Suppose z is a point of My 5 and let Q be o sufficiently small simply
connected neighborhood of the point ¢(z). Gwen a word t € W, we have

((n"/n) o s)/m = constant on Q
where t = 7 in Sy and s € S(, z).
ProposiTioN 4.3.  ( cf. [AK; 55p, the method of M.Goursat] ) If a function ¢ is a
solution A(«), then so is the function mug™ where t € W and t =7 in Sg.

We mention integral representations of the function fy and induced solutions of A(a)
from fy by the Sy action.

ProrosiTiON 4.4. The function fo(a;x,y) is identically equal to 1 on the curve {1, 3}
where * = w and y = wv.

Put
o1 =11,2,3,4,5} e2={1,3,2,4,5} eo3=1{2,1,3,4,5} o,=1{4,123,5}
os =1{5,1,2,4,3} o5 =1{4,1,3,2,5} o7=1{51,3,4,2} o53=1{1,2,4,3,5}
o9 ={1,2,5,4,3} o110 ={5,1,4,2,3}.
ProrosITION 4.5. The function mt‘.f{,’" i a constant multiple of the function z; in

[AK; 62p] where t; € W and t; = o; in Ss.

We remark that the ten functions above have integral representations which are given

in [AK; 58p].
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5. An elemental connection formula of the system of F
Put
iﬁ(a.}:l:crg) . P—i*r(a;:}:ao) 61571‘(().’2:1:(1’4) o e—iw(cm:i:cy‘l) ) /E

*M:f:(,a') = ( 1#(&1+a,:|:cr ) e—rr(cq-}-cxs:i:n ) eiw(r.r5:trr1icv3) - e—iTI'(Q;-,:FG]:FQS)

where
£ s i'n' (atos) —t"rr(u{;—{—agj

Let § € Dyg be a simply connected domain of the twenty simply connected domains. When
§ C Uy, we put Ms(a) = My (a) and when § C U, , we put Ms(a) = M_(a). Notice that

. :szr(a1+oz.,)(em(ovz+a 5) _m(uﬁ_a,))/&,.
(Ms(a)) ™! = Myas (a!*®)), (45) € Ss,
7 Giﬂ'(a’s:i:cxz) — e_i‘?'l'(ﬂ’ﬁ:]:(_‘tg) pimlanFag) _ p—in(antas)
(IM#(G)) N (Ciﬁ(al_&iaaxa") — eimlaitagtay)  gim(ogtardos) _  —in(asFarFas) /‘SI:

gl o ezvr(cn-,-!—az) - e—ﬂr(a5+a3)=

and
Caag?ri : sin woy _ 5( ag+1)wi sin W[—Q‘.ﬁ“ll
7.11-6( ) sin w(l—ag—aﬁ-l). sin w(ao+u4—l)
65(—a'5+]}7r-: Sin (e fog—1) E(aq-I-aq—l)rrz sin m(—eas41)
sin m(—aa—cq+1) sin m(astay—1)
where ¢ = + when § C U;" and ¢ = — when 6§ C U;

THEOREM 5.1. Suppose that

o1 + a3, + oy, 00 +as € Z.

_ (1 0 )
g = (0 E\/Ig(af)) e

We have

In order to prove Theorem 5.1, we need a connection formula of the Gauss hypergeo-
metric function. Put

gy

" i
F( ) Zl“(l—}—n Flec+n)I'(1—a—n)I(1—-b—n)
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LEmMA 5.1.  (Connection formula of the Gauss hypergeometric function, see, e.g. [IKSY;
Chapter 2])

sfa b _ tami_ Sinwd - a 1 4+@—E o
F( ,v) = g — a’b)F(l—I—u—b = 1lv

)
c sinw(b — (?.)2

bmi_ SIOTE g b 1+b-c,

3)(1—c;v)ﬁ’<a+1—c b+1—c:;v)

2—c

— --. T D = b ; A A -_—
= etle—et)miZDTE 7 7) (¢ )p(—a;v)F( ] e C;l/v)

sin(b— a) l4+a—20
i(h—c+1)m5111”fr(c—”-), 1N b 1+b—c
T Sill’?'r((‘.'.-"b)p( ba”)F 1—|—ZJHCI ,1/1) .
where £Imv > 0 and a — b,c & Z.

Proof of Theorem 5.1. Putting a = ay +a3 —1,b=1— a5 and ¢ = 2 — oy — a3,
we apply Lemma 5.1 to the functions ¢i(a;0,v) and p(as + a5 — 1;0) f1(e; 0,v). Then we
have

(5.a1) plas + as — 1;v) fi{a; 0,v) = My(e) p(1 —as;1/v) fo(e; 0,v)
g1(a;0,v) plon + as — 151/v)g2(a; 0, v)

where Imv > 0 ¢ § C Uyf and Imv < 0 & § C U; . Let f be a solution of the system
A(a). Changing the variables 2 to w and y to wv in (4.1) and (4.2), we have

(56[2) [(gw = 91.)(91” + (5] + &3 = 1) ] ‘lU(9uJ —l_ &5 )(Gw = gv — Oy + 1)]f = D
(5.a3) (600w + a1 -+ a5 — 1) — wv(0y + a1 )0y — as + 1)]f = 0.

Adding the two equations above, we obtain ¢f = 0 where

=0u(0p + a1 +a3—1)

(5.a3)
—w ((Gw + vy )(()w - 9'” — oy + 1J + T«"(_a'm + ay )(91: — g+ 1)) .

Put &
h =p(—1+ a3 + as;v) f1(a; wo,v)

— Ms(a)11p(—1 + as;v) fa(a;w, 1/v)
— Ms(a)12p(1 — o — as;v)ga(a; we, 1/v)

where Mjs(a);; is the (2, 7)-th element of the matrix M;s(a).
The function k(w,v) is holomorphic function at (w,v) = (0,a), « € R. We have

b~ mastly —
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and h(0,v) = 0 from (5.a1). Put
h(w,v) = i hi(v)wk.
k=0
Then the function hi(v) satisfies
(k+1—a; —ag+ 1)(k+ 1)hrta(v)
— ((k — az +1)(k — 0, — a1 — ag — aq) +v(k — a3 + 1)(0y — a5 + 1)) hi(v) = 0.
Since hy(v) = 0, we have hp(v) = 0, which shows h = 0 and
p(1 — ay — az;w)h = By — Ms(a)11 Py — Ms(a)i2®3 = 0.
Similarly, we can show

Py = 11{5(0:)21@53 + ﬂig((.r)gg@g. [

In Section one, we defined the action of Sg on the open variety #7!'(X'). The per-
mutation group Ss induces 120 biholomorphic transformations on 7 ~'(X'). The group Ss
acts on simply connected domain § € Dyg. Given a permutation ¢ € Sy and a domain
§ € Dyy, it follows from Theorem 1.1 (1) (3) that there exists a domain 3 that satisfies
§ = T,(3). The domain /3 is denoted by §7. Put

Py 50 =msPs(a”;we,vq)
! ! a ! !
D, 5o = msPy(a”;wy, v,)

‘o Ve

where s € W and s = ¢ in Ss.
We have the following connection formula.

THEOREM 5.2. We hawve

) _ 1 0 -
S (0 <Mg(a))”) Pase

on the domain 6% where s € W and s = o in Ss.

v}
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6. A connection formula for the system of hypergeometric equations Es 5

We can derive a linear relation between the functions ¥ and ¥’ by utilizing Theorem
5.1. To show the linear relation, we need to define the following functions ¢;,¢2 and c3.

DerintTION 6.1.

L

el i) e when Ima >0
‘Il iy A — - .
i e~ ™' when Ima <0,

e 2™ when Ima > 0,Imb > 0,Ime < 0

eal s ) = i, gET when Ima < 0,Imbd < 0,Ime > 0
1 in other cases,
[lf) [kf] ["-}][f"(’] “ N Eats ] ) — o Ry
: 3 ; = 2] kl k71%[:€]%.
o (815 {ia) = (i) 11760t

Note that
z* = e1( s )(—=z)¥,
(zy)* = calp; 2, y, zy) y*,

oo (e ) RAN _ o [] (R [GRAY e 1 [i]
K (“‘ [7] [if) 2(”{@']’[gf]’[k_ﬂ[w]) 2(*"“]’ [kj]’[if.i])

THeorEM 6.1. Suppose p € My 5 and let U be a sufficiently small simply connected
neighborhood of the point p. We have

l

U(a;z) = M(p,a)¥' (a;2) on U

where

a1 0 A i
M(p,a) = D : Z)' ) ;
Aipyo) (U A{@(a«')) , #(p) €8 € Dao.

{
i) = ¢ (1 B [25% [}4])
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and
P11 Pis

n = (p;; Vel
P21 P23 gy (pij) = 1\/_[215,

[25] = [55](p), i.e. [4] =

Proof. The i-th rows of the functions ®, ', ¥ and V' are denoted by ®;, !, ¥; and
U’ respectively. It follows from the definition of the function ¥, we have

n®; = ¥y and n®| = ).
We will show
6.al n®s = cyd) ¥y and nd, = cud| V),
! 12 1+2

amo(i-m-afid B),

where

It follows from Lemma 3.1 that we have
7}(I’2
=np(l — oy — ag;w)plaz + as — L;v) f

G ™

o | s e e e — 2 B0 [
=ncy (1 1 3 [14] [23}) 3 ( 2 + Qs 1, [15} [24])
% [24]1‘“0‘1“03[14]014-(1'3—1[13]]—n‘l—fr3[23](y1-|—a-3—1

% [25]024-05_1 [15}—0‘2—(_‘(54-1 {14] ag4og—1 [24] —aa—as+1 fl )
and
n o,

:r}p(l —ap —ag;w)plas — 1; v) fa

o (t-or-en ) B

which yields (6.al).

Similary, we can show that

NP = esdy ¥y and n®y = c5d, U}

C; = C — (1 — ¥y, [24] [13]
5 3 (1 41 3 [14:] [23]) . U

where



7. Local connection matrices for the system of hypergeometric equations Fs 5

Kummer’s relation for the Gauss hypergeometric function

g b N g e c—a b =
(7.al) F(C ,.':)—(1 &) F( . ,$f1>

is well known. In this section, we give similar formulas for solutions of the system Ej 5(a).

THEOREM 7.1. The isotropy group I of the point {1,3} N {2,5} by the action of Sy on

Z s generated by
(1 2 3 4
M= 2 1 5 4

We have (11)* = (12)? =1 and

) and 7, = (13).

W Ot

I={id, 71,72, 7172, 72T, 1721, T2T1 T2, (1 7T2)* = (1271)?}.

ReMARK. The group I is the Weyl group of the root system Bs.

Suppose that a1 + a3, a2 + a5 ¢ Z and p € My'5. Let U be a sufficiently small simply
connected neighborhood of the point p. Given an element = € I, there exists an unique
matrix N(7,p,a) € GL(3,C) such that

U" = N(r,p,a0)¥ on T,
because ¥ is a fundamental set of solutions of the system E; 5(«).
THEOREM 7.2. Gwen clements o,7 € I, we have
(7.a2) N(ot,p,a) = (N(o,q,a))” N(7,p,a)

where g =p".

Proof. We have
U7 = N(o,q,0)¥

around the point ¢ from the definition. Acting 7 on the both sides, we have
U7 = (N(o,q,c))" ©7
on U. Since the domain U is simply connected and we have
U" = N(r,p,a)¥ on U,
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we obtaln
U7 = (N(o,¢,«))” N(r,p,a)¥ onU. |

REMARK. We call the condition (7.a2) pseudo-cocycle condition. The system of the
matrices (7.a30) and (7.a40) given below is a solution of the pseudo-cocycle condition
(7.a2).

We will derive explicit formulas of N(o,p,«), o € I. Tt follows from Theorems 7.1
and 7.2 that N(o, p, @) can be expressed in terms of N(7y,q,a) and N(ma,r, «). Hence, it

is sufficient for our purpose to derive explicit formulas of N(m,q,a) and N(7,r, a).

THEOREM 7.3. Suppose p € My 5. Let U be a sufficiently small simply connected
neighborhood of the point p. We have

P = :V(T] s Py C{')\If.‘

U™ = N(72,p,a)¥ on U

where
0 a 0
(7.a30) N(ri,pja)=|ays 0 0},
0 0 a4
ay = c1{ag + ay — 1; —[12]),
g = C](CL’Q + ay — 1, —{1:..]),
gy = C](O{g -+ £y = 1; “[1L]),
: by 0 0
g I(a) (&
(7.a40) N(72,p,a) = 140s) 0 b 01,
Ha) \g o o
b = ci(ay + ag — 1; [31])01(—(}:3; [21])
_— 34] [12] [35] [12])°
—ay;[23])e: -[ e — 1¢
oo (o =3 il ) o (as -1, 1)
e?r:iﬂ‘n = G-Tri(.rg
bl = bfl ey _ e—miay '’
by — c1(ey —1; [21])
) o T TR . [18] [32]}°
c1(ag — 15[23])ey (Ctg, (2] [35]
b3 . C]_(C\:g = 1; [32])

cilay — L [12))es | —ove — as : [34} HQJ ., . . [35] [12
( 1;[12])es ( Yo — kg 1 [32] [14]) Cy ((15 —1; [32] (15

)
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In order to prove the theorem, we need lemmas and propositions. Put

[1 ]cx-, +aa—1 [1311:\/1+&3°—l [14]&-1—1 [15]05_1[23]_0‘1 ;

m = (12
Ny = [12]r,}'|+[}"_)—] [15]—(1'3 [23]&3'—1[24]0‘4-1[251024-&5—]’
??3 = [1210l+ag—1[14_]*r1-_>—a-5+! [15](\'5—] [23](!‘3*[[24]—01‘0'3+l-

Then we have the following lemma.

Lemma 7.1, Suppose that z € My . Then

_(13)
M = bfl [(1 — rw.)cu—l (1 . _w,U)afﬁ—.l] o,
m :
(13)
- by [(1 — w?;)_a?] 0,
72
(13
3 ;

= by [(1 —w) @2 ostl(] — we)® ] o,
ns '

Proof. The lemma can be proved by the following computation.

rg&'w) _alay + a3 — 1;[31))er(—as; [21))
mo e1(—aq;[23))
% [82] 0w reatae—lga]=a=1{gp) a1
% [12] e sr—ae L el g) et
c1{ay + az — 1;[31])ei(—as; [21])
B c1(—aq;[23])
9]~ et [g4)eu =1 [1g]e—1 4]+
2]'-0«'5-1-1[35]cm;,~1[12]@5—],[15]—(154‘1

-+ (B2) " ()™

Thus, we obtain the first formula. The other formulas can be proved in a similar way. ||

X [3
% [3

In Section 4, we show that the functions fi and g¢; defined around the point (w,v) =
(0,0) € Z have the unique analytic continuations to the domain ugnug nue” (o,0',0" =
+). We also denote the analytic continuations by fi and ¢y, i.e., the functions f; and G
are holomorphic functions defined on the domain Lp ep, L, which is a disjoint sum of 8
simply connected domains, and have powerseries expansions given in (4.a90) around the
point w = v = 0. Here,

Dy ={U; NU; NUS" |o,0',0" = £},

27



Prorosrrion 7.1. Let D, D" be elements of Dg. Then the domain
B T )
is empty or connected. If the domain s not empty, then the domain
Dy(e)NnDNTy (D)
is not empty for any positive number ¢ where

Dy(e) = {(w,v) ||w|,|v]| <&} C Z.

~J
[SV]

LEMMA 7.

. Let f and m be holomorphic functions on I_JDe'Dg D. If
m-(foTy)=f onT '(D')YNDNDy(e)#0B, 0<e<<1,

then

m-(foTr)=f onT ' (D)ND.

Proof. The domain T L(D'"YN D is connected from Proposition 7.1. Since the functions f
and m - (f oTr,) are holomorphic in the domain 7' (D')N.D, then we have the conclusion.

[

In order to prove Theorem 7.3, we need to find operators, which are elements of the
left ideal generated by (4.1), (4.2) and (4.3), of the forms

(7.a2) Ouw(0w + e1) — wpy(w,v,0,,80,)
(Ta3) Gu(gv + e ) - ”Pz(’w7 v, 91!11 91: ),

where e1,e3 € C and p; (2 = 1,2) are polynomials in w,v, 8, and 6,.
The operator of the form (7.a2) is given in (5.a5). Let us find the operator of the form
(7.a3). Multiplying (4.3) by wv and changing the variables x to w and y to wv, we have

(T.ad) Oo(8w — Oy — g + 1) + v( =00, + Fff, —(~a5 +1)0y + (—as + 1)8,).

Substituting (7.a4) from (5.a3), we obtain
(7.a3)
(?U(F)v — Q9 —a’5+1)-|-'U[—?.l-’(_9w+(l'] )(91, —6‘5-4—1)—}—9,1;91, —9”+(—015+1)910—(—Lt5+1)9v] = (I



LeMMma 7.3. Let h be a holomorphic function at (w,v) = (0,0). We suppose that
R(0,0) =0 and oy + az, a9 + a5 & Z. Then we have

(1) If LA =L"h =1, then h= 0.

(2) If bwl— o —ospdatas—lp — phyl—a—aayaetas—lp — () then h = 0.

(3) If twl—oi—esh = plyl~1=sp = (, then h = 0.

Proof. Put
h(w,v) = Z h(v)w®.
k=0

Since (h = 0, we have

(;(' + 1)(;\ -+ 1 + (a5 -+ vy — 17)1’31“_{.]_('0)
~((k+a1)(k =0, —as+ 1)+ v(k + 1)@ — a5 + 1)) hi(v) = 0.
Therefore if ho(v) = 0, then hy(v) = 0. It follows from (7.a3) that the function hy(v)

satisfies
[00(0y — a2 —a5 + 1)+ v{—0, — (—as + 1)8,}] ho = 0.

Since ho(0) = h(0,0) = 0, we have ho(v) = 0. We have completed the proof of (1).
Similarly, we can show (2) and (3). |

LEMMA 7.4, Put

w wuv

ho = (1 = w)™ (1 —wo)* ™ fo(al'?; :
w—1" wv—1

)3

N wv  (1—w)
hy = (1 —wv)~%2 fi (a3, :
1= ) Al we—1" 1 —wov )

w  (1—-w

hy = (1 —w)~®27 s H1(] _ y)* g, (a(1¥; :
w—1" L—iop

Then the functions h; are holomorphic at (w,v) = (0,0) and

ho(0,0) = 1/(T(ay + a3)T(1 — az)D(aq )T (as)),
}?1(0,(” = 1/(F(a2 + CVS)P(l == &'Q)P(O'] )P(Chl)),
hg(o, U) = 1/(P(2 iy, —= (\;)F(l — (g )T(arl)f‘(cr5)).

Moreover, the functions h; satisfies

Lho =¥'hy =0,

_ewl—ﬂ'l—ﬂ‘s 02+C‘f5—1h’l =7 'l—C\‘l—(Y:s?),ﬂ'z-i-ua—lhl - 0,

.{)wi—ﬂ'l—ﬂ‘:«hq . e,wl—r\'l —{\r:shg =i

v w



ProPOSITION T7.2. Let D and D' be elements of Dg. If the domain TT_QI(D') N D s not
empty, then the identies

1—'((1'3)(6?.”“3 - c‘—‘iﬂ'(}‘a)

(e )(eime — g=iman )’

ho = fola;w,ww)

W T R { >y
hy = fi(a; wo, U)F(ft] )
; P((\r‘:;)
ho = R :
12 .rn(a,u,v)r(arl]

hold on the domain.
Proof. Let us show the first identity. Put

I‘(G.','j ')(eirrng " e—z".rrof;g )

- F((l| ‘)(c-im‘l — 8~z‘rrm)'

Co

Since {(hy — cofo) = €'(ho — cofo) = 0 and hg — ¢o fo is holomorphic and equal to 0 at the
point (w,v) = (0,0), we have
hy — Cufo = (

on the domain Dy(e) (0 < ¢ << 1) from Lemma 7.3. Since

h‘D = (1 - ‘w)ali_] (1 =S ,wv)c"“_l (fu(a(]:”; "3 ) © TT?) (Ilwa U)v
we have
hu . Cu_)v() =0

on the domain T;'(D') N D from Lemma 7.2. Other identities can be proved in a similar
way. [

REMARK. We have

w we

plag = 1; 1 —wlplas — 1;1 — ‘U’U')fo(‘i"’a, g, (v, (g, (V5 ;
' w—1"wev—1

:fg(al , Qi2, 03, Qg , QU5 W, WU)

from Proposition 7.2. The formula above is known ( see, for example, [Mill1] or [Uel; §3]).
Putting v = 0, we have

~ w 5
plag — 1;1 — w)fo(as, az, a1, a4, as; ,0) = folar, as, as, ay, as;w, 0),

w—1"

which is equivalent to (7.al).
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Proof of Theorem 7.3. We can easily show (7.a30) from the expression of ¥™. Let us
show (7.a40). We have

) (13)
I)Jl(h() o] (’C) — A——\I}gln
m
from Lemma 7.1. Hence, we have
(13 e
HJ__)\I,(“}) = ¥, Liag Jle™= — & ﬂ’aa)
M1 1 1 I\[Va,l)(eim:n . E—in‘al)

from Proposition 7.2. Similarly, we can derive the other elements of the matrix N(72, p, a).

I
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8. The connection matrix between ¥ and ¥~

In section 1, we constructed a blowing up space Z of the projective space P?. We
construct a connected graph G from the blowing up space as follows. The space Z\7 7' (X")
consists of ten irreducible curves which have 15 normally crossing points. The vertices of
the graph G correspond to the 15 normally crossing points. We use the naming of the
normally crossing points to name the vertices, i.e. we name each of the vertices {7, 7 }N{k, ¢}
(or{7,5},{k,(}). Two vertices are connected if and only if the corresponding two normally
crossing points are on a curve of 10 curves, i.e. the two points are on an irreducible
component of Z \ #71(X"'). The graph G is a regular connected graph (see Figure £.8.1).

14,51, 12,3}

{25} 12,0)

{13, 12,4}
{1,9), 12,5}

(1,3}, (4,5}

{L,2},1{4,5]

The graph G
Figure £.8.1

Given an element o of Sg, put

p= {17,857 } 1 {27, 47}

and
r1 = {1,3} n {2,5}.
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Since the graph G is connected, there exists a walk from the vertex p; to the vertex p.
The vertices on the walk are denoted by p1,...,pm,Pm+1 = p. It follows from the naming
of the vertices that there exist permutations o € Sy that satisfy the condition

o= 117K, 7% ] r1{ 27, 5Fx)
o {10:@—1,3%—1} N {20;.-—1.4%—1}

fork =1.... ¢mE1s

p=[L3][2,5]

Figure £.8.2

LemMma 8.1.
(45)0’1,~(0’k+1)_1 el

where I s the isotropy group given in Theorem 7.2.

Put 7, = (45)ok(0or41)"". Let ¢ € M 5 be a non-split point and U be a sufficiently
small simply connected neighborhood of the point ¢. We have

(S.Cl) P = ju'(grfk . a{)q,(-‘l:'))

on Sy, (U) where the matrix M(¢",«) is explicitly given in Theorem 6.1. Acting o) on
the both sides of (8.¢1), we obtain

(8.¢2) U7k = (M(¢%*,a))" G5
on U. We have
(8.63) P = N(Tk,q%+, )T
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on Sg.,, (U). The explicit expression of N(7x,¢”*+!,a) is given in Theorem 7.3 and 7.4.
Acting o41 on the both sides of (8.¢3), we obtain

(8.c4) POk = JA8)Ok — (N (7 ¢%k41, @) Rt YOk op U,
Therefore we have

o — (M(q”l ) Gf))al (N(m1,¢°2, a’))ag
x (M(q%2, @) (N(r2,¢%%,a))”"
X P

% (B g% a)]™ (N sy Tet ja]) "V EPREE gy [,
Since 0y € I and 00,41 = Tm41 € I, we have

U7 = N(oy,q,0)¥ on U

U7 = (N(Fms1, 471, @)™ W7+ on U,
Now, we have proved the following fact.

THEOREM &.1.
U =C(o,q,a)T7 on U

where
Clo,q,a) =
(N(o1,¢,0)) " (H (M(q%* )™ (N (1, ¢4+, a))““) {(N(Tms1,¢7m+1,0)) ™41} 7
K=l

34



[Aom1)|

[AK]
[BFS1]
[G1]
[GG1]
[GG2]
[GKZ]
[IKSY]
[Mill1]

[Sas1]

[Sekl]
[Sek?2]

[Tak1]

[Terl]
[Ter2]

[Uel]

[MSY]

References

Aomoto, K., On the structure of integrals of Power product of linear functions. Sci-
entific Papers of College of General Education, Mathematics, University of Tokyo, 27
(1977), 49-61.

Appell, P. et Kampé de fériet, J., Fonctions hypergéometrique et hypersphériques -
polynomes d’Hermite, Gauthier-Villars, Paris, 1926.

Billera, L.J., Filliman, P. and Sturmfels, B., Constructions and complexity of sec-
ondary polytopes, Adv. in Math. 83 (1990), 155-179.

Gel'fand, .M., General theory of hypergeometric functions. Soviet Math. Dokl.(English
translation) 33, (1986), 573-577.

Gel'fand, I.M. and Graev, M.1., Hypergeometric functions associated with the Grass-
mannian Gy 6. Soviet Math. Dokl (English translation) 35, (1987), 298-303.
Gel'fand, LM. and Gel’fand, S.I., Generalized hypergeometric equations. Soviet Math.
Dokl.(English translation) 33, (1986), 643-646.

Gel'fand .M., Zelevinskii, A.V. and Kapranov, M.M., Hypergeometric functions and
toral manifolds, Funk. Anal (English translation) 23(1989), 12-26.

Iwasaki, I., Kimura, H., Shimomura, S. and Yoshida, M. , From Gauss to Painlevé.
Wiesbaden, Vieweg Verlag, 1991.

Miller, W., Jr., Lie theory and the Appell functions F;. SIAM J. Math. Anal., 4
(1973), 638-655.

Sasald, Takeshi, Contiguity relation of Aomoto-Gel'fand hypergeometric funcitons and
applications to Appell’s system F3 and Goursat’s system 3 Fy. SIAM J. Math. Anal.,
22 (1991), 821-846.

Sekiguchi, J., Global representations of solutions to zonal spherical systems on
SL(3)/SO(3). preprint, University of electro communications, Tokyo.

Sekiguchi, J., The birational action of S5 on P*(C) and the icosahedron. preprint,
University of electro communications, Tokyo.

Takayama,N., Propagation of singularities of solutions of the Euler-Darboux equation
and a global structure of the space of holomonic solutions, to appear, Kobe University,
Kobe.

Terada, T., Quelques propriétés géométriques de domaine de F} et groupe de tresses
colorées, Publ. RIMS Kyoto Univ., 17 (1981), 95-111.

Terada, T., Fonctions hypergéometriques Fy et fonctions automorphes I. Journal of
Mathematical Society of Japan, 35 (1983), 451-475.

Ueno, Kazuo, Hypergeometric series formulas generated by the Chu-Vandermonde
convolution. Memoirs of the Faculty of Science, Kyushu University Series A, Mathe-
matics, 44 (1990), 11-26.

Matsumoto, K., Sasaki, T. and Yoshida, M., Recent progress of Gauss-Schwarz theory

and related geometric structures. Advanced studies in pure mathematics, 22 (1991),
299



