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1 Introduction

We denote by D the Weyl algebra

C〈x1, . . . , xn, ∂1, . . . , ∂n〉,

that is the ring of linear partial differential operators with polynomial coeffi-
cients. LetM be a holonomic D-module on the n-dimensional space Cn = {x =
(x1, . . . , xn)}. The 0-th restriction of M to V (xm+1, . . . , xn) is defined as

M

xm+1M + · · ·+ xnM

(see, e.g., [3], [11, Chap 5]). An algorithm computing the restriction was given by
T.Oaku [7]. In this paper, we consider a problem of computing the restriction for
a given holonomic D-module with parameters. We will give a partial answer to
the problem for general holonomic D-modules and an answer to hypergeometric
holonomic D-modules.

The basic method for performing various calculations on ideals or submod-
ules of free modules involving parameters is the comprehensive Grb̈ner basis
introduced by V.Weispfenning [16]. K.Nabeshima, K.Ohara, S.Tajima [4] intro-
duced comprehesive Gröbner systems (CGS) for rings of linear partial differen-
tial operators. They applied their method of computing CGS to the problem of
computing b-functions for polynomials with parameters. The parameter space
is stratified so that a b-function is associated to each stratum.

For a given holonomic D-module with parameters, we want to stratify the
parameter space so that a restriction module that does not depend on param-
eters is associated to each stratum. We start with generalizing the method
by K.Nabeshita et al. to compute a generic b-function that is also called an
indicial polynomial or a b-function for restriction (Section 2). The maximal
integral root of it plays the central role to apply the Oaku’s b-function criterion
of the restriction algorithm [7]. The parameter space can be stratified so that a
generic b-function is associated to each stratum. However, the difficulty is that
roots of it still depends on parameters. We use isomorphic correspondences of
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D-modules with parameters to address this difficulty. Since we only need to
consider integral roots to obtain the restriction, isomorphic correspondences are
fully available.

We focus on algorithms to construct isomorphisms among hypergeometric
D-modules in sections 3, 4, 5, 6. M.Saito gave an algorithm to classify GKZ
hypergeometric systems into isomorphic classes [10]. We give an algorithm
to classify a class of hypergeometric systems of Horn type [2] into isomorphic
classes. The key ingradient of our method is constructing strata so that a conti-
guity relation of a hypergeometric system with parameters is associated to each
stratum. Note that a general algorithm to check if two holonomic D-modules
are isomorphic or not is given by H.Tsai and U.Walther [15]. Considering a
comprehensive version of this algorithm is a future problem.

Utilizing algorithms to classifying isomorphic classes of hypergeometric sys-
tems, we finally give a comprehensive restriction algorithm in section 7. The
remaining sections 8, 9 are discussions on restrictions to the origin of the Gauss
hypergeometric system and the Appell F1 system.

2 Comprehensive Gröbner System and Generic
b-function

K.Nabeshima, K.Ohara, S.Tajima introduced an algorithm for computing com-
prehensive Gröbner systems (CGS) in rings of linear partial differential oper-
ators [4]. They also gave applications of CGS for computing b-functions for
singularities. We apply their algorithm to obtain b-functions for weight vectors
to compute restrictions of D-modules. See, e.g., [11, Chap 5] on b-functions
for weight vectors. Being inspired by the computer algebra system Risa/Asir1

command name generic bfct, we call them generic b-functions. We also call a
generic b-function a b-function for restriction in this paper to distinguish with
a b-function of a contiguity relation and a b-function for a polynomial.

Let
Dn[β] = C[β1, . . . , βm]〈x1, . . . , xn, ∂1, . . . , ∂n〉

be the Weyl algebra with parameters β = (β1, . . . , βm) regarded as indetermi-
nates. We denote Dn by D when the number of variables is clear. For a left
ideal I generated by a set of generators P in D[β], we compute a Gröbner basis
G with a block order �b satisfying xi, ∂i �b βj for any i and j where � is a tie-
breaker of the block order. Put E = G∩C[β] and G′ = G\E. The set V (E) is a
given set of equality constraints on parameters. We denote by CGS(E,N, P,�b)
or by CGS(E,N, I,�b) the output CGS of I on V (E)\V (N) where N is a given
set of equality constraints on parameters. The CGS is a finite set of data of the
form (V (Ei)\V (Ni),Gi) where Ei, Ni ⊂ C[β], Gi ⊂ D[β] and they are finite set.
The CGS has a property that for any a ∈ V (Ei) \ V (Ni), Gi|β=a is a Gröbner
basis of P |β=a in D with respect to the order ≺. V (Ei) \ V (Ni) is called a
stratum and the strata of this form in the CGS cover V (E) \ V (N). Note that

1https://www.openxm.org
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when E = ∅, we regard V (E) = Cm. The procedure CGS is recursively called.
At the top level, we usually start with CGS(E = ∅, N = {1}, P,�b). Note that
V ({1}) = ∅.

Let w be a vector in Zn
≥0. The (−w,w)-degree of axp∂q is −w ·p+w ·q where

a ∈ C[β1, . . . , βm], a 6= 0, and xp =
∏n

i=1 x
pi

i , ∂q =
∏n

i=1 ∂
qi
i . The (−w,w)-

initial term for ℓ =
∑

(p,q)∈E apqx
p∂q is the sum of the maximal (−w,w)-degree

terms of ℓ and is denoted by in(−w,w)(ℓ). For a given left ideal I in D[β], the
ideal generated by in(−w,w)(ℓ), ℓ ∈ I is called the initial form ideal (with respect
to the weight vector (−w,w).

Let � is a term order in D[β]. The order �(−w,w) is defined as

cpq(β)x
p∂q �(−w,w) c

′
p′q′(β)x

p′
∂q

′

⇔ −w · p+ w · q > −w · p′ + w · q′

or (−w · p+ w · q = −w · p′ + w · q′ and xp∂q � xp
′
∂q

′
).

Since the order �(−w,w) is not a well-order, we need to utilize the homogenized
Weyl algebra to compute Gröbner bases with this order. Their CGS algorithm
can also be applied to the homogenized Weyl algebra with parameters (see,
e.g., [11, Th. 1.2.6] on the homogenized Weyl algebra), and obtain a CGS for
the initial form ideal of a given left ideal in D[β]. This method utilizing the
homogenized Weyl algebra is not explicitly described in the paper [4], so we
explain it below. Note that the case of the holonomic D-module M is of the
form Dm/I where I is a submodule can be discussed analogously.

Algorithm 1 (Computing parametric initial form ideal).

• Input : a set of generators of a left ideal I in D[β], a weight vector
w ∈ (Z≥0)

n

• Output : A stratification of the parameter space {(Ei, Ni)} and generators
of the initial form ideal in(−w,w)(I) on the stratum V (Ei) \ V (Ni).

1.

2. Let �h
(−w,w) be an order in the homogenized Weyl algebra defined as

cpq(β)x
p∂qhr �h

(−w,w) c
′
p′q′(β)x

p′
∂q

′
hr

′

⇔ −w · p+ w · q > −w · p′ + w · q′

or (−w · p+ w · q = −w · p′ + w · q′ and xp∂qhr � xp
′
∂q

′
hr

′
).

where the tie-breaker is an elimination order of h. Extending �h
(−w,w) to a

block order �h
b,(−w,w) such that xi, ∂i, h �h

b,(−w,w) βj , we compute a CGS

G = {(Ei, Ni,Gi) | i = 1, 2, . . . ,m}

for Ih.
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3. Return {(Gi|h=1, Ei, Ni) | i = 1, . . . ,m}.

Example 1. Our first example is the system of Appell differential operators
for F1(a, b, b

′, c;x, y), that is

x(1− x)∂2x + y(1− x)∂x∂y + (c− (a+ b+ 1)x)∂x − by∂y − ab, (1)

y(1− y)∂2y + x(1− y)∂x∂y + (c− (a+ b′ + 1)y)∂y − b′x∂x − ab′, (2)

(x− y)∂x∂y − b′∂x + b∂y. (3)

They annihilate the function F1. The left ideal I generated by them are holo-
nomic ideal for any value of the parameter vector and D2/I is a holonomic
D2-module for any specialization of the parameter vector. For the weight vec-
tor (−w,w), w = (1, 1), we apply Algorithm 1 to obtain CGS with respect to the
order �(−w,w). The parametric initial form ideal is generated for any parameter
values (a, b, b′, c) by

(x− y)∂x∂y + b∂y − b′∂x,
− y∂x∂y − y∂2y − b′∂x + (b− c)∂y,
− x∂2x + y∂2y + (b′ − c)∂x + (−b+ c)∂y,

(−xy + y2)∂2y − b′x∂x + (b− c)x∂y + cy∂y.

Our second example is the system of Appell differential operators for F2(a, b, b
′, c, c′;x, y),

that is

x(1− x)∂2x − xy∂x∂y + (c− (a+ b+ 1)x)∂x − by∂y − ab, (4)

y(1− y)∂2y − xy∂x∂y + (c′ − (a+ b′ + 1)y)∂y − b′x∂x − ab′. (5)

For the weight vector (−w,w), w = (1, 1), parametric initial form ideal is gen-
erated for any parameter values (a, b, b′, c) by

− x2y∂3x∂y + xy(x− y)∂2x∂2y + xy2∂x∂
3
y − b′x2∂3x + (c′x− (a+ b′ + c+ 3)y)x∂2x∂y+

((a+ b+ c′ + 3)x− cy)x∂x∂2y + by2∂3y − (a+ c+ 2)b′x∂2x + ((a+ b+ 2)c′x− (a+ b′ + 2)cy)∂x∂y+

(a+ c′ + 2)by∂2y − (a+ 1)b′c∂x + (a+ 1)bc′∂y,

y∂2y + c′∂y,

x∂2x + c∂x.

In the above examples, there is only one stratum.
The third example is the left ideal generated by ax∂x + by∂y and x∂x + y∂y

where a, b are parameters. When a− b 6= 0, the (−1,−1, 1, 1) initial form ideal
is generated by x∂x and y∂y. When a − b = 0, it is generated by x∂x + y∂y.
There are two strata.

The algorithm [11, Th.5.1.6.] for computing the generic b-function for any
weight vector of a holonomic D-ideal can be generalized to ideals with parame-
ters in coefficients as follows.
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Algorithm 2 (Parametric generic b-function).

• Input : A set of generators P of a holonomic left ideal I in D[β], a weight
vector w ∈ Zn

≥0

• Output: Stratification and the generic b-function b(s) on each stratum
where 〈b(s)〉 = in(−w,w)(I) ∩ C[s] (s =

∑n
i=1 wiθi, θi = xi∂i).

1. Compute a parametric initial form ideal in(−w,w)(I). We obtain the initial
form ideal generated by Gi on each stratum (Ei, Ni) (i = 1, . . . , r).

2. B ← ∅

3. For each i = 1, . . . , r, do

3.1 For each element ℓ of Gi, make a replacement xk → ukxk, ∂k → vk∂k
where k runs over a set of indices such that wk 6= 0. Let Ji be the
left ideal geneted by these ℓ’s and 1− ukvk.

3.2 Compute a CGS for the left ideal Ji on the stratum (Ei, Ni). We
use an elimination order � of uk, vk. (call CGS(Ei, Ni, Ji,�b).) Let
Gij and stratum (Eij , Nij) (j = 1, . . . , s) be the output. Collect all
elements that do not contain uk, vk from Gij and put them in G′ij .

4 For each j = 1, . . . , s, do

4.1 Any element P of G′ij is of the form P = xap(θ)∂b. Replace
it as [θ]ap(θ − b)[θ]b and put Jij the ideal generated by them
where θi = xi∂i. Here, [θ]a =

∏n
j=1

∏aj

l=1(θj + l) and [θ]b =∏n
j=1

∏bj−1
l=0 (θj − l), [11, p.45, p.195].

4.2 Add s −
∑n

i=1 wixi∂i to the ideal Jij . Regard it as an ideal in
C[β]〈θ1, . . . , θn, s〉, compute a CGS, and obtain the generator of
Jij ∩ C[s] on the stratum (Eijk, Nijk). In other words, compute
CGS(Eij , Nij , Jij ,�′

b) where �′ is an order satisfying x, ∂x �′ s
and take the minimal degree polynomial b(s) of s with coeffi-
cients in C[β] for each stratum. Add the polynomial b(s) and
the stratum to B.

Return B.

Example 2. The generic b-function for (−w,w), w = (1, 1) of the Appell system
of F1(a, b, b

′, c) is
b(s) = s(s+ c− 1)

on C4 = {(a, b, b′, c)}.
The generic b-functions for (−w,w), w = (1, 1) of the Appell system of

F2(a, b, b
′, c, c′) are

stratum generic b-function

V (0) \ V ((c− c′)(c+ c′ − 2)) s(s+ c− 1)(s+ c′ − 1)(s+ c+ c′ − 2)

V (c− c′) s(s+ c′ − 1)(s+ 2c′ − 2)

V (c+ c′ − 2) \ V (c− c′) s(s− c′ + 1)(s+ c′ − 1)
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3 Review on Algorithms for Contiguity Rela-
tions

In this section, we review known algorithms to find contiguity relations. In the
sections 4 and 5, we propose new algorithms to find contiguity relations.

LetK be a rational function field C(β1, . . . , βd). LetDn = K〈x1, . . . , xn, ∂1, . . . , ∂n〉
be the Weyl algebra of n variables over the field K. We denote Dn by D when
the number of variables is clear. We consider a family of holonomic D-modules
M(β) = D/I(β) where I(β) is a left ideal of D. The parameters βi’s are spe-
cialized to complex numbers in some context.

In what follows in this section, we assume that the parameters are specialized
to be numbers. Let Hi(β) be an element of D satisfying the condition

ℓHi(β) ∈ I(β) for all ℓ ∈ I(β + ei). (6)

Here β + ei means (β1, . . . , βi−1, βi + 1, βi+1, . . . , βd). Then, we have the left
D-morphism

φi :M(β + ei) 3 [p] −→ [pHi(β)] ∈M(β). (7)

The morphism φi induces the morphism of vector spaces of the opposite direc-
tion

HomD(M(β), Ôa) 3 f −→ Hi(β) • f ∈ HomD(M(β + ei), Ôa) (8)

where Ôa is a germ of formal power series at a point x = a. When the morphism
(7) is an isomorphism, the opposite linear map (8) is also an isomorphism. The
operator Hi(β) is called the up-step operator (for the direction i) or the up-step
contiguity operator. Analogously, if we have an element Bi ∈ D satisfying

ℓBi(β + ei) ∈ I(β + ei) for all ℓ ∈ I(β), (9)

then we have a left D-morphism

ψ :M(β) 3 [p] −→ [pBi(β + ei)] ∈M(β + ei), (10)

the operator Bi(β) is called the down-step operator or the down-step contiguity
operator.

Regard β as indeterminates. We consider the composite

M(β)
Bi(β+ei)Hi(β)−→ M(β), M(β + ei)

Hi(β)Bi(β+ei)−→ M(β + ei) (11)

When they are multiplications of a polynomial in β, it is called a b-function
of the contiguity among β and β + ei. When the value of the b-function is not
zero at a value of β, contiguity operators give an isomorphism amongM(β) and
M(β + ei). We call the set of up-step operator, down-step operator, and the
b-function contiguity relation.

We note that the same name of b-function is also used in the previous section
in a different context. If there is a risk of confusions, we call the b-function in the
previous section the b-function for restriction and the b-function in this section
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the b-function of the contiguity. The letter b is also used to denote a parameter
as a traditional way to express parameters of hypergeometric functions. It will
not be confusing.

Example 3. We consider the Gauss hypergeometric operator with a = c, b, c
and denote it by

L(b, c) = x(1− x)∂x + (c− (c+ b− 1)x)∂x − cb. (12)

Put β1 = b, β2 = c, d = 1, I(β) = DL(b, c) and consider M(β) = D/I(β). We
fix2 b as a generic complex number and assume also that c is a generic complex
number. Put θx = x∂x. The operator θx is called the Euler operator. Since

xL(c) = θx(θx + c− 1)− x(θx + c)(θx + b) = (θx + c− 1)(θx − x(θx + b)),

the classical solution space of it is spanned by

f1(c) = (1− x)−b

f2(c) = x1−c
2F1(1, 1 + b− c, 2− c;x)

as a vector space over C. An up-step operator and a down-step operator with
respect to c are

H(c) = (x− 1)∂x + c (13)

B(c) = (1− c) (x(x− 1)∂x + bx− c+ 1) . (14)

The b-function for the contiguity is

c2(c− b). (15)

These operators act to solutions as follows.

H(c) • f1(c) = (c− b)f1(c+ 1) (16)

H(c) • f2(c) = (c− 1)f2(c+ 1) (17)

and

B(c+ 1) • f1(c+ 1) = c2f1(c) (18)

B(c+ 1) • f2(c+ 1) = c2
b− c
1− c

f2(c). (19)

The operators H(c) and B(c+1) give a left D-isomorphism among D/I(β) and
D/I(β + e2).

We are interested in the following problem to apply for our comrehensive
restriction algorithm;
Problem Find up-step and down-step contiguity operators that give isomor-
phisms under a restriction of parameter space.

2We omit b to represent dependencies on parameters.
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Suppose we reparametrize β as β1 = L1(β
′
1, . . . , β

′
m), . . . , βd = Ld(β

′
1, . . . , β

′
m)

where Li are a linear forms of β′. We call this reparametrization a restriction of
parameter space. We regard β′ as a new β. For example, β1 = · · · = βd = β′

1 is a
restriction of parameter space and β′

1 is regarded as a new β. Our problem is to
find an up-step operator and a down-step operator, which give an isomorphism,
with respect to β′

1.
How do we find these up-step and down-step contiguity operators on a re-

stricted parameter space? There are several methods to find contiguity opera-
tors for hypergeometric systems. Here are a list of them.

1. For given an up-step or a down-step operator, deriving an down-step op-
erator or an up-step operator respectively by Gröbner basis [14], [12], [6].

2. Finding contiguity operators by utilizing the middle convolution and some
other operators for rigid systems [9].

3. Finding isomorphism among A-hypergeometric systems [10].

4. Finding isomorphism by finding rational solutions of a system of linear
differential equations.

5. Finding isomorphism of classical hypergeometric systems by restricting
isomorphisms of A-hypergeometric systems.

Each method has advantages and disadvantages. We briefly explain first three
known methods by examples. For general description of these method, please
refer to the cited papers above. Last two methods are new and we will give
general descriptions in next sections together with examples.

3.1 Deriving down(up)-step operator for a given up(down)-
step contiguity operator

Suppose that we are given an up-step (resp. a down-step) operator H. The
down-step (resp. the up-step) operator can be constructed by a Gröbner basis
computation in the ring of differential operators when parameters are generic
numbers [14], [6]. Let us explain this method by an example.

Example 4. The Gauss hypergeometric equation in terms of Euler operator is

L(a, b, c) • f = 0, L(a, b, c) = θx(θx + c− 1)− x(θx + a)(θx + b). (20)

Put Ha(a) = θx + a. By the relation x(θx + a+ 1) = (θx + a)x in D, we have

L(a+ 1, b, c)Ha(a) = Ha(a)L(a, b, c) ∈ DL(a, b, c). (21)

Therefore, the operator Ha(a) is an up-step operator with respect to a. Suppose
Ha(a) gives an isomorphism among D/L(a, b, c) and D/L(a+1, b, c). Since the
inverse of Ha(a) is a down-step operator Ba(a+ 1), the relation

Ba(a+ 1)Ha(a)− 1 ≡ 0 mod DL(a, b, c) (22)
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holds. In other words, the down-step operator Ba(a + 1) can be obtained by
solving the inhomogeneous syzygy equation in D

−1 + s1Ha(a) + s2L(a, b, c) = 0 (23)

where s1, s2 are unknown elements in D and s1 is Ba(a+ 1). There are several
algorithms solving inhomogeneous syzygy equations. In this case, computing
the Gröbner basis of (Ha(a), 1), (L(a, b, c), 0) in D

2 by the POT order solves the
syzygy equation [6]. The Gröbner basis contains an element

(a(c− a− 1), x(1− x)∂x − bx− a+ c− 1) = c1(Ha(a), 1) + c2(L, 0), ci ∈ D,

which implies that Ba(a+ 1) = 1
a(c−a−1)x(1− x)∂x − bx− a+ c− 1.

Since classical hypergeometric systems have either a trivial up-step operator
or a down-step operator as in (21), we can obtain any contiguity operator for an
integral shift for generic values of parameters by a composition and the method
of this section.

We call up-step operators Hi(β) and down-step operators Bi(β) atomic con-
tiguity operators. When they give isomorphisms, a composite of them also gives
an isomorphism. However, a restriction in the parameter space of the composite
does not always give an isomorphism.

Example 5. We denote x1 by x and D1 by D. We consider the Gauss hyper-
geometric system D/DL(a, b, c). The following operators are atomic contiguity
operators.

Hα(a, b, c) = x∂x + a, (24)

Bα(a, b, c) = −x(x− 1)∂x − (bx+ a− c), (25)

Hγ(a, b, c) = x(x− 1)∂2x + ((a+ b− c+ 2)x− 1)∂x + ((b− c+ 1)a+ (−c+ 1)b+ c2 − c),(26)

Bγ(a, b, c) = x∂x + c− 1 (27)

Although we use β as underminates of the rational function field K or a param-
eter vector in a general setting, we use the same symbol β to use the traditional
parameter notation of the Gauss function 2F1. Since the distinction is clear
from the context, we do not think it will cause any confusion.

We compose them as

H := Hc(a+ 1, b, c)Ha(a, b, c), B := Bc(a, b, c+ 1)Ba(a+ 1, b, c+ 1).

Reducing B by DL(a+ 1, b, c+ 1), we obtain

B̄ = (a− c)(x(x− 1)∂x + bx− c). (28)

It gives an isomorphism among D/DL(a + 1, b, c + 1) and D/DL(a, b, c) for
generic values of parameters. Note that B̄ can be divided by a − c. When we
restrict B to a = c, we have B′ = −x2(x−1)∂2x−x((b+ c+2)x− c−1)∂x− (c+
1)(b)x, which belongs to the left idealDL(c+1, b, c+1). This means that B′ does

9



not give an isomorphism. On the other hand, we can see D/DL(c+ 1, b, c+ 1)
and D/DL(c, b, c) are isomorphic for generic complex numbers b, c by

H̄ =
1

b(b, c)
((c− 1)(x− 1)∂x − c(c− 1)) (29)

and by B̄/(a− c) where b(b, c) = c(c− 1)(c− b).
This observation shows that a restriction of a composite of atomic contiguity

operators, which gives an isomorphism for generic values of parameters, does
not always give an isomorphism. However, dividing a factor like a − c might
give an isomorphism as we have seen above. Unfortunately we have no proof
that this division is always possible.

3.2 Finding contiguity operator for rigid systems

Let us briefly explain a method to construct contiguity relations given in [9,
Sec 3.2, Chap 11] by an example. We will construct a contiguity relation with
respect to c for the hypergeometric function

f(a, b, c; z) =
1

Γ(a+ 1)

∫ 1

0

(z − x)axb(1− x)cdx.

It satisfies the Gauss hypergeometric equation (20) L(−a,−a− b− c− 1,−a−
b) • f = 0. Put ϕ = xb(1− x)c. Put ϕ+ = (1− x)ϕ. Applying ∂x to it, we have

∂x • ϕ+ = (∂x − (x∂x + 1)) • ϕ.

Now, we apply the fractional derivative ∂−µ
x , µ = a+ 1 to the both sides. Note

that we have the formula

∂−µ
x x∂x = (x∂x − µ)∂−µ

x

or

∂−µ
x x∂x = ∂−µ

x x∂x∂
µ
x∂

−µ
x = Ad(∂−µ

x )(x∂x)∂
−µ
x , Ad(f)L := f−1Lf

in the ring of factional differential operators3 [9, Secs 1.2, 1.3]. Moreover, we
have

∂−µ
x • φ(x) := Iµ(φ) :=

1

Γ(µ)

∫ x

c

φ(t)(t− x)µ−1dt

where c is suitably chosen. This action gives a left module structure to the ring
of fractional differential operators and a space of holomorphic functions. By
utilizing these relations, we have

∂−µ
x ∂x • ϕ+ = ∂−µ

x (∂x − (x∂x + 1)) • ϕ (30)

∂x∂
−µ
x • ϕ+ = (∂x − (x∂x − µ+ 1))∂−µ

x • ϕ (31)

∂x • Iµ(ϕ+) = (∂x − (x∂x − µ+ 1)) • Iµ(ϕ) (32)

3We have no rigorous definition of this ring. The term is used as an intuitive wording.
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Thus, changing the variable x by z, we have

∂z • f(a, b, c+ 1; z) = (∂z − (z∂z − a)) • f(a, b, c; z) (33)

The function f(a, b, c; z) satisfies the ODE

L • f(a, b, c; z) = 0, L = θz(θz − a− b− 1)− z(θz − a)(θz − a− b− c− 1) (34)

where θz = z∂z.
There exist differential operators r3, r4 such that r3∂−1 = r4L(a, b, c+1) =

0, because L is irreducible for generic values of a, b, c. In fact, r3 = ((z−z2)∂z+
(2a + b + c + 1)z − a − b)/(a(a + b + c + 2)) and r4 = L/(za(a + b + c + 2)).
Applying r3 to (33), we have

f(a, b, c+ 1; z) = r3(∂ − (z∂z − a)) • f(a, b, c; z).

Reducing r3(∂z − (z∂z − a)) by L(a, b, c), we obtain

z(1− z)∂z + az + (c+ 1)

a+ b+ c+ 2
• f(a, b, c; z) = f(a, b, c+ 1; z) (35)

which is a contiguity relation.
Note that when b = −1, the operator L is factored as

(θz − z(θz − a− c))(θz − a) (36)

and then it is not irreducible. However, we are lucky for the case b = −1 that
the inverse r3 of ∂z exists and the method above works for this degenerate case.
When a = 0, b = −1, there is no inverse of ∂z modulo L, because the left ideal
generated by ∂z and L is the principal ideal generated by ∂z. The method of [9]
does not give a contiguity relation for this case. Note that a different approach
gives the isomorphism. See Example 6, (44), and Section 5. The contiguity
derived by methods above agrees with (35) restricted to a = 0 and b = −1. The
agreement seems to be a coincidence. As we have seen in Example 5 it is not
always possible to obtain an up-step or a down-step operator by a restriction of
parameters.

Finally, we note two things.
It follows from the relation (35) and the comparison of the constant term

that the contiguity relation for hypergeometric series g(a, b, c; z) := F (−a,−a−
b− c− 1,−a− b; z) is

z(1− z)∂z + az + (c+ 1)

c+ 1
• g(a, b, c; z) = g(a, b, c+ 1; z).

The Riemann scheme of the ODE Lf = 0 is x = 0 x = 1 x =∞
0 0 −a

a+ b+ 1 a+ c+ 1 −a− b− c− 1

 (37)
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3.3 Finding isomorphisms among A-hypergeometric sys-
tems

Mutsumi Saito [10] gave an algorithm to stratify the parameter space β of a given
A-hypergeometric system by isomorphic classes. He also gave an algorithm to
construct an isomorphism among isomorphic A-hypergeometric systems with
different beta’s.

Let us see his construction with an example. Consider

A =

 1 0 0 −1
0 1 0 1
0 0 1 1

 . (38)

and a parameter shift

χ = χ+ − χ−, χ+ = (1, 0, 0)T , χ− = (0, 1, 0). (39)

We have χ+ = Au, u = (1, 0, 0, 0)T and χ− = Av, v = (0, 1, 0, 0)T . The
monomial ideal Mχ [10, (4.13)] is generated by ∂1, ∂3. A heuristic method to
find generators of Mχ is an exhaustive search of u satisfying Au ∈ χ+NA until
we succeed to find a relevant b-ideal. Then, we can see that the b-ideal Bχ [10,
(4,14)] is generated by b(s) = s1+s3. We want to construct an operator E such
that

E∂u = b(β)∂v modHA(β) (40)

where we regard β as indeterminates. We may regard E as an inverse operator
of ∂u−v. Although [10, Alg 4.2] gives an efficient algorithm to construct E, the
following procedure will be easier for small examples. Compute Gröbner basis
in the free module in D2 of (∂1, 1), {(ℓ, 0) | ℓ ∈ HA(β)} with the POT order such
that x1, x2, x3, x4, ∂1, ∂3, ∂4 � ∂2, β1, β2, β3 [6]. The Gröbner basis contains an
element ((β1+β3)∂2, x1∂2+x3∂3). Then, we have E = x1∂2+x3∂4. Let f(β;x)
be a solution of HA(β). Then, we have E∂1 • f(β;x) = (β1 + β3)∂2 • f(β;x).
Since ∂i • f(β;x) = f(β − ai;x) (modulo non-zero constant factor), we have

E • f(β − e1;x) = (β1 + β3)f((β − e1) + e1 − e2;x). (41)

In other words, E gives a up-step operator for χ = e1 − e2. Note that E gives
an isomorphism of corresponding D-modules under some conditions.

By setting β = (c−1,−a,−b), solutions of this A-hypergeometric system can
be written by the Gauss hypergeometric function 2F1(a, b, c; z). Assume a = c.
Then the restriction of E (see Section 5) gives a contiguity for the integer shift
of c for 2F1(c, b, c; z).

As to a general construction algorithm of E and b, refer to [10]. Although
this method is efficient, a simpler method works for small problems. Let us
explain the simple method.

Algorithm 3 (Finding E and b).

12



• Input: generators ℓ1, . . . , ℓm of HA(β). ∂
u, ∂v where u, v ∈ Nd

0 and their
supports are disjoint and D/HA(β−Au) and D/HA(β−Av) are isomor-
phic.

• Output: E ∈ D and b ∈ C[β] such that E∂u = b∂v modulo HA(β).

1. Compute a Gröbner basis G by the POT order of

∂u

1
0
0
·
·
·
0


,



ℓ1
0
1
0
·
·
·
0


,



ℓ2
0
0
1
·
·
·
0


, · · · ,



ℓm
0
0
0
·
·
·
1


∈ Dm+2 (42)

The tie breaker ≺ of the POT order is β ≺ (∂i’s in the support of ∂v) ≺
(other variables).

2. Find an element of the form (b∂w, c0, c1, . . . , cm)T such that ∂w|∂v in the
Gröbner basis G.

3. Put E = ∂v−wc0 and return E and b.

Note that each element of β may be degree 1 or 0 polynomials of indeter-
minates. For example, β = (−c,−c, 1, c − 1, c′ − 1) is OK and C[β] means
C[c, c′].

The correctness of this algorithm can be shown as follows. The existence of E
and b is proved in [10]. Therefore, the Gröbner basis of ∂u and ℓi’s must contain
an element of the form b̃∂w, b̃ ∈ C[β] whose leading term in≻(b̃)∂

w, divides the
leading term in≻(b)∂

v. Note that E and b are not unique in general. Although b
and b̃ might be difference polynomials, we denote b̃ by b in the sequel. Since the
Gröbner basis is computed by the POT order, we have b∂w = c0∂

u +
∑m

i=1 ciℓi
where ci ∈ D. Applying ∂v−w, we obtain the output.

Let us consider a degenerate case of β = (β1, 0, 1) for our A (38). It stands
for the case a = 0, b = −1, c− 1 = β1, which were considered in Section 3.2. By
applying the algorithm of [10], we have

U∂1 = β1(β1 + 1), U = −(x1x4 − x2x3)∂4 + (β1 + 1)x1, (43)

which gives an isomorphism of D modules

M((β1, 0, 1)) 3 ℓ 7−→ ℓ
U

β1(β1 + 1)
∈M((β1 − 1, 0, 1)), (44)

M((β1 − 1, 0, 1)) 3 ℓ 7−→ ℓ∂1 ∈M((β1, 0, 1))

when β1(β1 + 1) 6= 0.

13



4 Finding contiguity operators by finding ratio-
nal solutions

Let ℓ1, . . . , ℓm are generators of I(β + ei). Then, the condition (6) satisfied by
the up-step operator Hi is equivalent to

ℓj Hi(β) ∈ I(β), j = 1, . . . ,m. (45)

Let Rn = C(x1, . . . , xn)〈∂1, . . . , ∂n〉 be the rational Weyl algebra (the ring of
differential operators with rational function coefficients). Let {sk | k = 1, . . . , r}
be a set of the standard monomials with respect to a Gröbner basis G of I(β)
in Rn. The set is a basis of Rn/(RnI(β)) as a vector space over the rational
function field C(x) where C(x) is an abbreviation of C(x1, . . . , xn). Then, the
operator Hi can be expressed as

Hi =

r∑
k=1

ck(x)sk (46)

where ck(x) is an element of C(x). Reducing ℓjHi by the Gröbner basis G, we
have

∑r
k=1(L

k
ij • ck)sk where Lk

ij ∈ Rn. Then,

Lk
ij • ck = 0, j = 1, . . . ,m, k = 1, . . . , r (47)

should hold since ℓjHi belongs to I(β). From the above discussion, the problem
of finding an up-step operator Hi has been reduced to the problem of finding
a rational solution ck, k = 1, . . . , r of (47). This system can be transformed
into an integrable connection (a Pfaffian system). An algorithm of finding the
rational solutions of an integrable connection is given in [1]. We utilize this
algorithm to solve (47).

Example 6. Consider the left ideal I(c) generated by ℓ = (∂x − (x∂x − c))x∂x
in the D = D1 of one variable x = x1. The set of the standard monomials is
{1, ∂x} and we set H = c0(x) + c1(x)∂x. From (47), the vector valued function
F = (c′0, c0, c

′
1, c1)

T satisfies the equation dF
dx = PF where

P =


cx+1
x2−x 0 0 0

1 0 0 0

−2 1
x−1

(−c+2)x−1
x2−x

(2c−2)x2+3x−1
x4−2x3+x2

0 0 1 0

 .

The space of rational functions of this equation is spanned by (0,−1, 2x−1
c+1 ,

x(x−1)
c+1 ).

Hence, we have

H =
x(1− x)
c+ 1

∂x + 1. (48)

By computing the Gröbner basis of the left D submodule generated by (1, x(1−
x)∂x + c + 1) and (0, L) in D2 with the POT order, we see that (−x∂x + c +
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1, (c + 1)2) is in the basis. Hence, we have (−x∂x + c + 1)H − (c + 1) ∈ I(c),
which means that

B(c+ 1) =
−x
c+ 1

∂x + 1. (49)

Remark 1. For Dn-ideals, the set of the standard monomials are not finite.
We can apply this method to a finite subset of the set with looking for poly-
nomial solutions instead of rational solutions. If Dn/H(β) and Dn/H(β′) are
isomorphic as leftDn-modules, there exists a finite subset {sk} to expressHi(β).
Hence, if two Dn-modules are isomorphic, the modified method above can find
contiguity operators by enlarging the finite subset in finite steps.

5 From contiguity operators of A-hypergeometric
systems to those of classical hypergeometric
systems

A relation between A-hypergeometric systems and classical hypergeometric sys-
tems studied categorically in [2]. We study a relation of them in terms of
restriction of D-modules.

We consider an A-hypergeometric ideal HA(β). We assume the d×n config-
uration matrix A is of the form (Ed | A′) where Ed is the d× d identity matrix.
For example,

A =

 1 0 0 −1
0 1 0 1
0 0 1 1

 .

satisfies this assumption with A′ = (−1, 1, 1)T .

Theorem 1. Assume A = (Ed | A′).

1. The b-function (indicial polynomial) along x1 = · · · = xd = 1 is s.

2. The restriction

D/((x1 − 1)D + · · · (xd − 1)D)⊗D D/HA(β) (50)

is isomorphic to

Dn−d

Dn−d ∩ (HA(β) + (x1 − 1)D + · · · (xd − 1)D)

where Dn−d = C〈xd+1, . . . , xn, ∂d+1, . . . , ∂n〉 and parameters are special-
ized to complex numbers.

Proof. (1) It follows from the assumption of the form of A, the left ideal HA(β)
contains the operator θi+

∑
j>m aijθj−βi. We change the variables xi → xi+1,

i = 1, . . . , d, then this operator becomes

θi + ∂i +
∑
j>d

aijθj − βi.
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The initial term of this operator with respect to the weight vector (−w,w) =
(−1d,0n−d,1d,0n−d) is ∂i where 1d is a row vector of d ones and 0n−d is a row
vector of n− d zeros. Then, the initial ideal with respect to (−w,w) of HA(β)
with the new coordinates contains ∂1, . . . , ∂d. Therefore

C[θ1 + · · ·+ θd] ∩ in(−w,w)(HA(β))

contains s = θ1 + · · ·+ θd. Since HA(β) is regular holonomic, it is specializable
and the b-function is not constant. Thus, we have b(s) = s.

The statement (2) follows from the restriction algorithm [7] and (1). □

The Gauss hypergeometric system is the leftD1 module defined byD1/(D1L),

L = x(1− x)∂2 + (c− (a+ b+ 1)x)∂ − ab (51)

where x1 is denoted by x. The Appell F1 system is the left D2 module defined
by D2/IF1

where IF1
is the left ideal generated by (1), (2), (3) where (x1, x2) is

denoted by (x, y).
The Appell F2 system is the left D2 module defined by D2/IF2

(a, b, b′, c, c′)
where IF2(a, b, b

′, c, c′) is the left ideal generated by (4), (5).

Theorem 2. For any parameter value, the restriction of the following A-hypergeometric
systems defined by A and β as (52), (53), (54) to x1 = · · · = xd = 1 are the
Gauss hypergeometric system, the Appell F1 system, and the Appell F2 system
respectively by changing the variable names appropriately, e.g., (x6, x7) is (x, y)
in the case of F2.

A =

 1 0 0 −1
0 1 0 1
0 0 1 1

 , β = (γ − 1,−α,−β)T (52)

A =


1 0 0 0 1 1
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 −1 −1

 , β = (−a,−b,−b′, c− 1)T (53)

A =


1 0 0 0 0 1 1
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 −1 0
0 0 0 0 1 0 −1

 , β = (−a,−b,−b′, c− 1, c′ − 1)T(54)

Proof. Change variables xi to xi + 1 for i = 1, . . . , d. Compute a (−w,w)
Gröbner basis G for the restriction of each A-hypergeometric system with the tie
breaking block order satisfying x1, . . . , xn, ∂1, . . . , ∂n � β1, . . . , βd (parameters
are last). Computation by a computer program shows that (−w,w) order of
each element of G is positive, 0, or −1. See 2024-08-09-gkzF1.rr, 2024-08-09-
gkzGauss-rest.rr. Note that the b-function for the restriction is s by Theorem
1. Then, the restriction is generated by gx1=···=xd=0, {g ∈ G | ord(−w,w)(g) = 0}
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and (∂ig)x1=···=xd=0, {g ∈ G | ord(−w,w)(g) = −1}, i = 1, . . . , d. Computation
by a computer program shows that the restriction agrees with the corresponding
classical hypergeometric systems. □

5.1 Restriction of a left D-homomorphism

Let D = Dn be the Weyl algebra in n variables and I a left holonomic ideal in
D. b-function along xn = 0 is the monic generator b(θn) of the principal ideal
in(−w,w)(I) ∩ C[θn] where w = (0, . . . , 0, 1) and θn = xn∂n. Assume k0 be the
maximal non-negative root of b(s) = 0. Let

Fk0 =

k0∑
k=0

Dn−1∂
k
n (55)

Then, the restriction algorithm [7] gives a Gröbner basis G ⊂ Fk0 such that
D/(I + xnD) is isomorphic to Fk0/Dn−1G as the left Dn−1 module.

The b-function plays a cruicial role in the restriction algorithm. It follows
from the definition of the b function that there exists an operator r such that

b(θn)− r ∈ I, ord(−w,w)(r) ≤ −1

The key identity is

∂jnb(θn) = b(j)∂jn + (b(θn + j)− b(j))∂jn + ∂jnr mod I. (56)

Note that (b(θn + j)− b(j))∂jn ∈ xnD and ord(−w,w)(∂
j
nr) ≤ j − 1.

We define the normal form of f ∈ D in D/(I + xnD) as follows.

1. Remove all ∂jn (j > k0) and xn in f by (56) modulo I + xnD. The result
f̃ is in Fk0 .

2. Compute the normal form f̃ by the Gröbner basis G. We denote the result
by f̄ .

Assume ℓ ∈ D defines a left Dn-morphism among D/I and D/I ′ by D/I 3
[f ] 7→ [fℓ] ∈ D/I ′. Since it is well-defined, we have Iℓ ⊂ I ′. This morphism
induces the left Dn−1-morphism

D/(I + xnD) 3 [f ] 7→ [fℓ] ∈ D/(I ′ + xnD) (57)

It is well-defined because (I + xnD)ℓ ⊂ I ′ + xnD. The maximal integral root
of the b-function of I ′ along xn = 0 is denoted by k′0 and the Gröbner basis
obtained by applying the restriction algorithm to I ′ by G′.

Proposition 1. Assume k0 = k′0 = 0. Then, the morphism (57) is given by

Dn−1/Dn−1G 3 [f ] 7→ [f ℓ̄] ∈ Dn−1/Dn−1G
′ (58)

where the normal form ℓ̄ is taken in I ′ + xnD.

Proof . Since F0 = Dn−1, f does not contain the variables xn and ∂n. Then
we have f ℓ̄− fℓ ∈ xnD + I ′ from ℓ̄− ℓ = xnc1 + c2, c1 ∈ D, c2 ∈ I ′. Note that
f ℓ̄ ∈ Dn−1. □
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We note that these results can be easily generalized to the case of the re-
striction to xm = xm+1 = · · · = xn = 0.

5.2 Restriction of isomorphisms of A-hypergeometric sys-
tems to those of classical hypergeometric systems —
restriction of Saito’s isomorphism

We can obtain an isomorphisms among a contiguous family of classical hyperge-
ometric system such as the Gauss hypergeometric system and Appell hyperge-
ometric system F2 by applying the restriction algorithm to isomorphisms con-
structed by M.Saito [10] as long as the maximal integral root of the b-function
for the restriction is 0. Note that this method works for any degenerated pa-
rameters.

The general algorithm of computing the restriction of a homomorphism can
be described in a simple form for the GKZ system when A = (Ed, A

′) and the
restriction is that to x1 = · · · = xd = 1.

Algorithm 4 (LR(left-right)-reduction).

• Input: Rules ∂i → ℓi ∈ D, i = 1, . . . , d. An element ℓ ∈ D.

• Output: ℓ̄ such that ℓ̄ = ℓ modulo I +
∑d

i=1 xiD where I is the left ideal
in D generated by ∂i − ℓi, i = 1, . . . , d.

Repeat
ℓ← ℓ|x1=···=xd=0;
Choose a term of the form t := cxα∂β∂i, c ∈ K in ℓ and rewrite

ℓ← cxα∂βℓi + (ℓ− t)

until (there is no term divided by ∂i, i = 1, . . . , d)
Output ℓ as ℓ̄.

It is easy to see ℓ̄ satisfies the output condition when the algorithm stops.
For the GKZ system with A = (Ed, A

′), we firstly make the change of variables
J = HA(β)|xi→xi+1,i=1,...,d and use the rules

∂i → ℓi, ℓi = −xi∂i −
n∑

i=d+1

aijxj∂j + βi, i = 1, . . . , d. (59)

Note that ∂i−ℓi belongs to the GKZ ideal J . The LR-reduction choosing t by the
lexicographic order ∂1 � ∂2 � · · · stops for this case because ℓi contains only the
term -xi∂i and other terms of ℓi do not contain ∂k, k = 1, . . . , d. More precisely,
it can be proved as follows. Consider the degree(cxp∂q∂i, ∂i) be the degree
of cxp∂q∂i with respect to ∂i. The degrees of all terms in xp∂qℓi|x1=···=xd=0

are strictly smaller than the original degree. We use the lexicographic order
∂1 � ∂2 � · · · to choose the term t. Then the degree of the leading term
decreases strictly in a finte steps. Then, the LR-reduction stops.
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Example 7. Let us consider the A-hypergeometric system HA(β) for A = 1 0 0 −1
0 1 0 1
0 0 1 1

 and β = (c−1,−a,−b). The column vectors of A is denoted

by a1, a2, a3, a4. We denote D4/HA(β) by MA(β). We will restrict HA(β) to
x1 = x2 = x3 = 1. In other words, we consider

D4

HA(β) + (x1 − 1)D4 + (x2 − 1)D4 + (x3 − 1)D4
. (60)

The b-function b(s) along x1 = x2 = x3 = 1 is s and then the maximal integral
root is 0 for any value of β. When B(β + a1) = (β1 + 1 + β2)(β1 + 1 + β3) is
not zero, ∂1 gives an isomorphism

MA(β) ∈ [f ] 7→ [f∂1] ∈MA(β + a1) (61)

and the inverse of ∂1 is

U1 = x2x3∂4 + x1x3∂3 + x1x2∂2 + x21∂1 + x1 (62)

divided by B(β + a1). See [12] and [10] as to algorithms. Let us compute the
normal form Ū1. To do this, we make the change of variables xi → xi + 1
(i = 1, 2, 3) in HA(β) and consider the restriction to xi = 0 (i = 1, 2, 3). The
operators U1 is

(x2+1)(x3+1)∂4+(x1+1)(x3+1)∂3+(x1+1)(x2+1)∂2+(x1+1)2∂1+x1+1 (63)

and first order operators in HA(β) is

(x1 + 1)∂1 − x4∂4 − β1, (64)

(x2 + 1)∂2 + x4∂4 − β2, (65)

(x3 + 1)∂3 + x4∂4 − β3. (66)

(67)

Then,

∂1 → x4∂4 + β1, (68)

∂2 → −x4∂4 + β2, (69)

∂3 → −x4∂4 + β3 (70)

(71)

are reduction rules (56) obtained by the b-function. Applying these rules to (63)
and remove elements in x1D4 + x2D4 + x3D4, we obtain

Ū1 = ∂4 + (−x4∂4 + β3) + (−x4∂4 + β2) + (x4∂4 + β1) + 1 (72)

Replacing βi’s by a, b, c, we have the contiguity operator

1

(c− a)(c− b)
((1− x4)∂4 − a− b+ 1) . (73)

Note that ∂̄1 is x4∂4 + c.
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The isomorphism (61) holds when a = 0, b = −1 and c(c+ 1) 6= 0 and then
it induces the isomorphism of the restriction.

If two A hypergeometric systems D/HA(β) and D/HA(β
′) are isomorphic,

then the restriction of them are isomorphic.

6 Representatives of isomorphic classes

Let us consider hypergeometric systems of Horn type obtained by restricting
GKZ hypergeometric systems for A = (Ed, A

′) to x1 = · · · = xd = 1. If
no confusion arises, we also denote this system of Horn type by HA(β). We
assume β ∈ Zd for simplicity. M.Saito show that isomorphic classes of GKZ
hypergeometric systems can be described by a set Eτ (β) [10]. Although the
result may give a classification algorithm based on a geometry of polyhedra
and an algebra of monomials, we propose different approach. Although our
algorithm works well for Gauss hypergeometric system and Appell systems for
F1, F2, we have not yet proved that our algorithm stops in finite steps. One more
disadvantage of our method is that it may output isomorphic objects as different
objects. Note that it is not known if an isomorphism among two hypergeometric
systems of Horn type implies an isomorphism among associated GKZ systems.

Let V = V (L1, . . . , Lm) be an affine space defined by the intersection of
the zero sets of (independent) linear polynomials Li(s1, . . . , sd), i = 1, . . . ,m.
Suppose that V contains an integral point S(V ). Then, there exists a set of

vectors vj(V ), j = 1, . . . , d−m, V ∩Zd can be expressed as S(V )+
∑d−m

j=1 Zvj(V )
(an efficient algorithm to find them is given in [5]). We denote by H(β) a
hypergeometric system of Horn type or a GKZ hypergeometric system.

Algorithm 5.
procedure representative candidates(V , H(β))

1. Compute contiguity relations of H(β) for a basis {vj(V )} and S(V ) stand-
ing for the affine subspace V and associated b-polynomials B(V ).

2. A = the arrangement defined by B(V ) on V .

3. Pick one interior point for the intersection I of each maximal face of A
and Zd. Let P be the collection of them.

4. For each codimension 1 face f of A, put V ′ be the affine hull of f , call
P ′ =representative candidates(V ′, H(β)), and P = P ∪ P ′.

5. return P

Call P =representative candidates(Rd,H(β)). Remove redundant elements
from P by contiguity relations, then we obtain finite representatives of (some)
isomorphic classes. If we keep contiguity relations and defining inequalities
of I in each step, this algorithm also gives isomorphisms among isomorphic
D/H(β)’s.
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Remark 2. 1. This algorithm may output isomorphic objects as different
objects.

2. If the left Dn-module Dn/H(β) and Dn/H(β′) are isomorphic, then the
left modules Rn/RnH(β) and Rn/RnH(β′) over the rational Weyl algebra
is isomorphic. Then, if there is no rational solution by the method of
Section 4, the corresponding two Dn-modules are not isomorphic.

Definition 1. Let M be a set of vectors {vj(V ) | j = 1, . . . , d − m} of Zd.
Consider a set of points F in Zd. We construct a directed graph on vertices
F by adding an edge between p, q ∈ F when there exists vj(V ) such that q =
p+vj(M). When the graph is connected, we call F is of mesh type with respect
to M .

Theorem 3. The output of Algorithm 5 gives all representatives of the iso-
morphic classes when the sets of points I’s in the algorithm are mesh type with
respect to {vj(V )}’s in the algorithm.

Proof . Let s be a point in I. The point s does not lie in the zero set of
B(V ). Then, the contiguity relation with respect to vj(V ) gives an isomorphism
between D/H(s) and D/H(s + vj(V )). Hence, if I is of mesh type, all points
in I are connected by isomorphisms associated to vj(V )’s. □

Example 8. The confluent hypergeometric function

1F1(a, c;x) =

∞∑
k=0

(a)k
(1)k(c)k

xk

is annihilated by
L(a, c) = x∂2x + (c− x)∂x − a (74)

It is obtained by restricting the GKZ hypergeometric system forA =

(
1 0 1
0 1 1

)
to x1 = x3 = 1 and by changing the variable x2 7→ −x2. Put M(a, c) =
D/DL(a, c) whereD = D1. Set V = R2 and v1(V ) = (1, 0) and v2(V ) = (0,−1).
Consider the direction ±v1(V ) = (1, 0). We have

M(a, c)
x∂x+a←− M(a+ 1, c) (75)

M(a+ 1, c)
−x∂x+x+a−c+1←− M(a, c) (76)

The composite of these left D-morphisms

M(a, c) 3 ℓ 7→ ℓ(−x∂x+x+a−c+1) 7→ ℓ(−x∂x+x+a−c+1)(x∂x+a) ∈M(a, c)

is
a(a− c+ 1), (77)
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a = 0 c = a+ 1

c = 0

c = 1

Figure 1: A part of the directed graph and reducing representatives

that is the b-function of this hypergeometric system for the direction (1, 0) ∈ Z2.
Consider the direction v2(V ) = (0,−1). We have

M(a, c)
x∂x+c−1←− M(a, c− 1) (78)

M(a, c− 1)
x∂x−1←− M(a, c) (79)

and the b-function is
a− c+ 1. (80)

We have four 2-dimensional faces for the arrangement a(a−c+1) = 0 in V = R2.
Secondly, we consider an arrangement on the 1-dimensional space V = {a =

0}. We have S(V ) = (0, 0) and v1(V ) = (0, 1). The contiguity relation on V
is also given by (78) and (79). Then, the arrangement has two 1-dimensional
faces and one 0-dimensinal face (0, 1).

Finally, we consider arrangement on V = {a− c+ 1 = 0}. We have S(V ) =
(0, 1) and v1(V ) = (1, 1). The contiguity relation is given as

M(c− 1, c)
c∂x←− M(c, c+ 1) (81)

M(c, c+ 1)
x∂x−x+c←− M(c− 1, c) (82)

and the b-function is c(c − 1). Then, the arrangement has three 1-dimensional
faces and two 0-dimensional faces (−1, 0) and (0, 1).

All set I obtained by Algorithm 5 for the system for 1F1 are of mesh type
and Figure 1 illustrates a part of the directed graph of isomorphisms. Big circles
of the figure are reduced set of representatives.
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Remark 3. Let {Li(s)} be a set of linear polynomials of d-variables with integer
coefficients. We consider the arrangment defined by {Li(s) = 0}. A problem of
finding a Markov basis for the set {s ∈ Zn |Li(s) > 0 for all i} can be reduced to
the method of finding a Markov basis for the standard expression of the feasible
points {u ∈ Nn

0 |Au = b} where A is a matrix and b is a vector with integer
entries (see, e.g., [13]). We set s = u − v ∈ Zd, u, v ∈ Nd

0 and express the set
as {(u, v) ∈ N2d

0 |Li(u − v) ≥ 1}. Adding slack variables, we express the set
in the (u, v) space as the standard expression of the feasible points. Thus our
reduction is done. A markov basis for the lattice points in a relative interior of
a face of the arrangement can be obtained analogously.

Remark 4. The set I can be regarded as feasible points of an integer program.
Then, the Markov basis that connects all points in I can be obtained by a
Gröbner basis with the trick in the previous remark. If I is not of mesh type,
we compute a Markov basis {mj} and contiguity relations for moves {±mj}.
We have new b-functions and the arrangement may become finer. We repeat this
procedure until the arrangement does not become finer. Although Saito proved
isomorphic classes of HA(β) are finite when β ∈ Zd [10], we cannot prove that
this repetition stops in finite steps for now. It is a future problem for us to
study this method utilizing Markov bases.

Theorem 4. If A = (E, ∗) is normal, we can classify the associated Horn sys-
tems HA(β) for β ∈ Zd into isomorphic classes and compute contiguity relations
among isomorphic systems.

Proof. We denote the GKZ hypergeometric by the same symbol HA(β). Let
Fσ(s) be the primitive integral supporting function where σ is a facet of the
cone generated by the column vectors of A. Since β, β′ ∈ Zd, the values of
Fσ(β) and Fσ(β

′) belong to Z. Consider the hyperplane arrangement A defined
by Fσ(s) = 0 where σ runs over the facets. Assume that β and β′ belong to
the relative interior of a same face of the arrangement. It follows from [10, Th.
5.2] that MA(β) := D/HA(β) and MA(β

′) are isomorphic, because the theorem
says that they are isomorphic if and only if β − β′ ∈ ZA and

{facet σ |Fσ(β) ∈ N0} = {facet σ |Fσ(β
′) ∈ N0}.

Compute a Markov basis for the lattice points in the relative interior of
each face of the arrangement A and contiguity relations associated to the basis.
Note that contiguity relations can always be found because MA(β) and MA(β

′)
are isomorphic (Section 4). It follows from Theorem 1, Section 5 and that the
isomorphism amongMA(β) andMA(β

′) gives an isomorphism among associated
Horn systems that we have completed the proof. □
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7 Comprehensive Restriction Algorithm

Let Dn be the Weyl algebra of n variables. Let I(κ) be a holonomic left ideal
of Dn with parameters κ ∈ Cd. We want to compute the restriction module

Dn

I(κ) + x1Dn + · · ·+ xmDn
. (83)

Algorithm 6. (Comprehensive restriction algorithm that gives a partial an-
swer)

• Input: I(κ), x1 = · · · = xm = 0.

• Output: Strata S1, S2 and S3 of the κ space Cd. The restriction module
(83) on each stratum of them.

1. Ans=[ ].

2. Put w = (

m︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) and compute a comprehensive Gröbner system

G by ≺(−w,w) order.

3. Compute comprehensive b-functions for restriction, which are monic gen-
erators of in(−w,w)(I(κ))∩C[θ1 + · · ·+ θm]. Let S1 be strata of the com-
prehensive b-functions that refines strata of the comprehensive Gröbner
system.

4. For each stratum U of S1, refine U into subsets such that (a) the maximal
non-negative integral root of the b-function is 0 or (b) no non-negative
integral root of b or (c) other cases on each subset. Let S′

2 be the collection
of subsets such that (a) or (b) holds. Let S′

3 be the collection of subsets
such that (c) holds.

5. For each stratum V of S′
2, compute a comprehensive Gröbner system of

G′′ = G′|x1=···=xm=0 where G′ is the collection of the elements of the
(−w,w) Gröbner basis G on V such that ord(−w,w)(g) ≤ 0, g ∈ G. It
refines V and let S2 be the collection of these refinement.

(a) The restriction module on each stratum W of S2 of type (a) is
D′⟨

(a Gröbner basis of G′′ on W )
⟩ whereD′ = C〈xm+1, . . . , xn, ∂m+1, . . . , ∂n〉.

Append them to Ans.

(b) The restriction module (output) is 0 on the set of strata of S′
2 of type

(b). Append them to Ans.

6. For V in S′
3 (type (c)), if I(κ), κ ∈ V is a GKZ system or a hypergeometric

system of Horn type discussed in previous sections, call Rfr(I(κ(p)), p,G, V )
(representatives for restriction, Algorithm 7) where we reparametrize κ by
p as κi(p) = pi. The return value is strata S3 and restrictions on each
stratum of S3. Append them to Ans. If I(κ) does not belong to these
hypergeometric systems, this algorithm does not give an answer.
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7. Return Ans.

Example 9. Let κ = (a, b, c) ∈ C3 and consider the left ideal I(κ) of D1

generated by the Gauss hypergeometric operator L = x(1 − x)∂2 + (c − (a +
b + 1)x)∂ − ab. Here x1 is denoted by x and ∂1 by ∂. The set {L} is (−1, 1)
Gröbner basis for any κ. Then S1 = {C3}. We have in(−1,1)(L) = x∂2 + c∂,
then the b-function for restriction is θ1(θ1 + c − 1). Then S′

2 is {V } where
V = {(a, b, c) | c 6∈ Z≤0}. Since ord(−1,1)(L) = 1, we have G′ = ∅. Then the
restriction module on V is D′ = C. The strata S′

3 (case (c)) is {W} where
W = {(a, b, c) | c ∈ Z≤0}. This case will be discussed in Section 8.

Let q̄1 be the maximal non-negative integral root of the b-function for the re-
striction. LetG be theG that appears in Algorithm 6. We denote by Rest(G, q̄1)
the output of the final step of computing Gröbner basis in a free module of the
restriction algorithm, see, e.g., [11, Steps 6 and 7 of Alg. 5.2.8]. Since G contains
parameters, the return value is a comprehensive Gröbner system consisting of
a strata and Gröbner basis on each stratum.

Example 10. LetH2(a, b, b
′, c, c′) be the left ideal generated by (4) and (5) that

annihilates the Appell function F2. Consider the leftD2-moduleM(a, b, b′, c, c′) =
D2/H2(a, b, b

′, c, c′). Suppose that c = 0 and c′ /∈ Z≤0. The maximum non-
negative root of the b-function is s0 = 1−c = 1 (see Example 2). The restriction
module is

C∂x + C∂y + C
C(−ab) + Cc′∂y + C(−ab′)

.

The dimension is equal to 3 minus the rank of the matrix(
0 0 −ab
0 c′ −ab′

)
.

The stratification with respect to the rank can be obtained by a comprehensive
Gröbner system for linear polynomials. Rest(G, 1) returns this comprehensive
Gröbner basis.

In order to compute the restriction modules on the strata S′
3 for a GKZ

system or for a hypergeometric system of Horn type, we apply the following
algorithm utilizing algorithms to find contiguity relations. This algorithm is a
variation of representative candicate (Algorithm 5).

Algorithm 7. Procedure Rfr(HA(β(p), p,G
′, E).

Input: HA(β(p)) (hypergeometric system), p (a set ofm parameters), G′ ((−w,w)-
Gröbner basis), E (conditions).
Output: a list of [conditions(stratum), restriction, contiguity relations].

1. Ans=[ ].

2. Let r1(p), . . . , rk(p) be the roots of the b-function for the restriction.
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3. For all ri, assume ri ∈ Z≥0 or not and relationships (larger or smaller or

equal) among ri’s supposed to be non-negative integers. Let K̃ be the set
of all distinct assumptions on ri’s.

4. For K ∈ K̃ do

(a) q(p) be the maximal non-negative integral root under the assumption
K. If q(p) is a constant, append [E ∩K, Rest(G, q(p)), ∅] to Ans and
continue the for-loop.

(b) Changing the indexing, we suppose that q(p) depends on p1. Intro-
duce new variables q1, . . . , qm such that q1 = q = αp1 + · · · (α 6= 0),
qi = pi (i ≥ 2) and express β by q.

(c) Choose δ ∈ Z>0 so that

βi(q + δe1)− βi(q) ∈ Z for all i (84)

where e1 = (1, 0, . . . , 0).

(d) Put Λ = {0, 1, 2, . . . , δ − 1}.
(e) For k in Λ do

i. Derive the contiguity relation for it (Lu, Ld, b(q))

D/HA(β(q+ke1))
Ld→ D/HA(β(q+(k+δ)e1))

Lu→ D/HA(β(q+ke1))
(85)

where LdLu ≡ b(q).
ii. Consider

(Rm \ V (b)) ∩ (R× (q̄2, . . . , q̄m)) (86)

where q̄2, . . . , q̄m are generic numbers. Let Q be the set of the
q1 ∈ N0 that is the minimum in each first coordinate of connected
components of (86).

iii. Factorize b(q) into degree 1 polynomials as
∏J

j=1 bj(q).

iv. For all q̄1 ∈ Q do

A. Append [E∩K∩{b(q) 6= 0}, Rest(G, q̄1), the contiguity relation].

v. For all factors bj in b do

A. Eliminate one variable in q1, . . . , qm by bi(q) = 0. Changing
indices, we suppose that qm is eliminated.

B. Express β in terms of q1, . . . , qm−1.

C. Append Rfr(HA(β(q1, . . . , qm−1), (q1, . . . , qm−1), G,E∩K∩
{bi = 0}) to Ans.

5. Return Ans.

Remark 5. Although, as long as we have tried, we can always find a contiguity
relation of δe1 shift, we might fail at this step. If we fail to find a contiguity
relation of δe1 shift, we need to increase δ. Since the number of isomorphic
classes of HA(β + ι), ι ∈ Zd are finite by [10], we can find a contiguity relation
at a suitable δe1.

26



Remark 6. Algorithms 6 and 7 will be generalized to obtain a restriction com-
plex (a restriction of Dn/I(κ) in a derived category) by applying the algorithm
of [8]. Note that we need to replace “maximal non-negative integral root” of
the algorithms 6 and 7 by “maximal integral root”. A comprehensive version of
(−w,w)-adapted resolution is an open question to give an algorithm to obtain
a restriction complex.

Example 11. This is a continuation of Example 8 (1F1 case). The b-function
for the restction to x = 0 is s(s + c − 1). The roots are s = 0 and s = 1 − c.
Type (a) case is 1 − c 6∈ Z≥0. Since ord(−1,1)(L) = 1, G′′ is empty. Then the
restriction is C. Since s is a factor of the b-function, type (b) case does not
occur.

Consider the type (c) case. In other words, assume c ∈ Z≤1. Let this
assumption be E. G is {L}. We call the procedure Rfr(HA((a, c)), (a, c), G,E).
Put q1 = 1 − c and q2 = a. Then, Λ = {0}. The condition on c becomes
q1 = 1 − c ∈ Z≥1 and the roots of the b-function for restriction is 0 and q1.
Firstly, we compute a contiguity relation for the shift from q1 = 1−c to q1+1 =
1 − (c − 1). The b-function for contiguity is q1 + q2 = 1 − c + a by (80).(
R2 \ V (q1 + q2)

)
∩ (R× q̄2) is (−∞,∞) × q̄2. Then the set Q of the minimal

non-negative integers in the connected component is {0}. The restriction on
this stratum is isomorphic to that of D/HA((a, c) = (a, 0)). Since the maximal
integral root is 1 in the (a, c) parameter space and ord(−1,1)(L) = 1, we have
G′′ = {L|x=0 = −a}. Thus, the restriction is C when a 6= 0 and is C2 when
a = 0. Secondly, we consider the case q1 + q2 = 1 − c + a = 0. The parameter
space is one dimensional and parametrized as (a, c) = (0, 1) − (1, 1)s′. We call
the procedure Rfr(HA((−s′, 1 − s′)), s′, G, {c ∈ Z≤0, c = a + 1 = −s′ + 1}.
The b-function for the contiguity of the shift s′ 7→ s′ + 1 7→ s′ is s′(s′ − 1) =
c(c − 1). Then, the cases of s′ = {−1, 0, 1} are representatives of isomorphic
classes. In other words, (a, c) = (1, 2), (0, 1), (−1, 0) are the representatives.
The restrictions are all C.

This procedure will be a little complicated. Then, more examples will help.
The comprehensive restriction algorithm will be illustrated for the Gauss hyper-
geometric system and the system of Appell function F1 in the following sections
8 and 9.

8 Restriction of the Gauss Hypergeometric Sys-
tem to the Origin

The Gauss hypergeometric function 2F1(a, b, c;x) is annihilated by the operator

L(a, b, c) = x(1− x)∂2x + (c− (a+ b+ 1)x)∂x − ab. (87)

We consider the left ideal generated by L

Hg(a, b, c) = DL(a, b, c)
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where D = D1. We will compute the restriction module

M(a, b, c)/xM(a, b, c) ∼= D/(Hg(a, b, c) + xD)

of the left D-module M(a, b, c) = D/Hg(a, b, c) to x = 0.
The generic b-function (for restriction) is

b(s) = s(s+ c− 1)

with respect to the weight vector w = (1). The stratum for this b-function is
C3 = {(a, b, c) ∈ C3}. The maximal non-negative integral root s0 of b(s) is

s0 =

{
0 (c /∈ Z≤0)

1− c (c ∈ Z≤0).

The Gröbner basis G of Hg by Algorithm 6 is {L}. The case (b) does not
occur and the stratification S2 of the case (a) consists of only one stratum

{(a, b, c) | c /∈ Z≤0}

and the restriction module is isomorphic to C, because ord(−w,w)(L) = 1 and
then G′′ = ∅.

Before illustrating steps of the procedure Rfr(Hg, (a, b, c), G, c ∈ Z≤0), we
show a conclusion that is a list of the restrictions depending on c.

(1) When c /∈ Z≤0, the restriction module is isomorphic to C.

(2) Suppose that c = 0. We have s0 = 1 and then B1 = {1, ∂x} (see, e.g., [11,
Alg. 5.2.8]). Consider the C-vector space with a basis B1 C2 = C·1+C·∂x.
Sorting the terms in L(a, b, 0) by <(−1,1), we have

L(a, b, 0) = x∂2x − x2∂2x + (−a− b− 1)x∂x − ab.

Since the (−1, 1)-degree of it is 1, the vector space of the denominator of
the restriction module is generated by (L(a, b, 0))|x=0 that is

(L(a, b, 0))|x=0 = −ab.

Thus, the restriction module is C2/V where V = C · ab. Therefore, we
have two cases as

• When a = 0 or b = 0, V = {0} and the restriction module is a
2-dimensinal vector space C2.

• When a 6= 0 and b 6= 0, V = C and the restriction module is a
1-dimensional vector space C.

(3) When c ∈ Z<0, we can reduce cases of c ∈ Z<0 to the case of c = 0 by
utilizing left D-module isomorphism

D/Hg(a, b, c) ∼= D/Hg(a, b, c+ 1)

where a, b are a or a + 1 and b or b + 1 respectively. We will prove this
fact in Proposition 2
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Note that we do not give a stratification of {(a, b, c) |, c ∈ Z<0} in the last
claim above. We will discuss on it after the proposition.

Proposition 2. When c ∈ Z<0,

D/Hg(a, b, c) ∼= D/Hg(a, b, 0)

holds where a, b are a or a+ 1 and b or b+ 1 respectively.

Proof. We abbreviate the Gauss hypergeometric operator as L(c) = L(a, b, c)
and the left ideal generated by L as Hg(c) = Hg(a, b, c).

The down-step operator B(c) with respect to c satisfies

∃P ∈ D s.t. L(c− 1)B(c) = PL(c).

The operator
B(c) = θx + (c− 1)

satisfies it. The up-step operator H(c) satisfies

L(c+ 1)H(c) = PL(c).

The operator
Hg(c) = (1− x)∂x + (c− a− b)

satisfies it.
Composing left D-module homomorphisms

φ : D/Hg(c+ 1) 3 [P ] 7→ [P ·H(c)] ∈ D/Hg(c)

ψ : D/Hg(c) 3 [P ] 7→ [P ·B(c+ 1)] ∈ D/Hg(c+ 1),

we have

φ ◦ ψ : D/Hg(c) 3 [P ] 7→ [P ·B(c+ 1) ·H(c)] ∈ D/Hg(c)

B(c+ 1) ·H(c) ≡ (a− c)(b− c) mod Hg(c)

φ ◦ ψ = (a− c)(b− c)id.

Reversing the order of the composition, we have

ψ ◦ φ : D/Hg(c+ 1) 3 [P ] 7→ [P ·H(c) ·B(c+ 1)] ∈ D/Hg(c+ 1)

H(c) ·B(c+ 1) ≡ (a− c)(b− c) mod Hg(c+ 1)

ψ ◦ φ = (a− c)(b− c)id.

Hence, when (a − c)(b − c) 6= 0, we have the isomorphism D/Hg(a, b, c) ∼=
D/Hg(a, b, c+ 1).

The isomorphism breaks when

a− c = 0 or b− c = 0.

We derive contiguity relations with respect to c for these cases.
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(1) When a − c = 0, put a = c. The up-step and down-step operators for
Hg(c, b, c) with respect to c are

B(c) = (1− c)(x(x− 1)∂x + bx− c+ 1),

H(c) = (x− 1)∂x + c,

B(c+ 1) ·H(c) ≡ c2(b− c) mod Hg(c+ 1),

H(c) ·B(c+ 1) ≡ c2(b− c) mod Hg(c).

Hence, when c2(b− c) 6= 0, D/Hg(c, b, c) ∼= D/Hg(c+ 1, b, c+ 1) holds.

(1-1) When b − c = 0, put b = c. The up-step and down-step operators for
Hg(c, c, c) with respect to c are

B(c) = (1− c)(x(x− 1)∂x + (2c− 1)x− c+ 1),

H(c) = ∂x,

B(c+ 1) ·H(c) ≡ c3 mod Hg(c+ 1),

H(c) ·B(c+ 1) ≡ c3 mod Hg(c).

Hence, when c3 6= 0, D/Hg(c, c, c) ∼= D/Hg(c+ 1, c+ 1, c+ 1) holds.

(2) When b − c = 0, put b = c. The up-step and down-step operators for
Hg(a, c, c) with respect to c are

B(c) = (1− c)(x(x− 1)∂x + ax− c+ 1),

H(c) = (x− 1)∂x + c,

B(c+ 1) ·H(c) ≡ −c2(a− c) mod Hg(c+ 1),

H(c) ·B(c+ 1) ≡ −c2(a− c) mod Hg(c).

When c2(a− c) 6= 0, D/Hg(a, c, c) ∼= D/Hg(a, c+ 1, c+ 1) holds.

(2-1) The case a− c = 0 is reduced to the case 1-1.

□

Example 12. Let us illustrate the behavior of Rfr(Hg(β), p = (a, b, c), G, I)
where β = (a, b, c), G = {L} and the condition I is c ∈ Z≤1. We retain symbol
names of Algorithm 7 and of the proof of Proposition 2. The roots of the b-
function for restriction are r1 = 0 and r2 = 1− c. Under the assumption I, we
have r2 ≥ r1. Then we put

q1(p) = 1− c, q2(p) = a, q3(p) = b.

We can set δ = 1 and then Λ = {0}. The contiguity relation is (B(c), L(c +
1), (a− c)(b− c)). The b-function of contiguity (a− c)(b− c) can be written in
terms of q as b(q) = (q1 + q2− 1)(q1 + q3− 1). If q2 and q3 are generic numbers,
there is only one connected component of (86). The first coordinate of it is
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(−∞,∞). Then, the minimum is 0 which means c = 1 (q1 = 0). Hence, the
restriction module is C when c ∈ Z≤1 and (a− c)(b− c) 6= 0. Isomorphisms are
given by the contiguity relation.

Let us run Rfr recursively with fewer parameter degrees of freedom. Let
b1(q) be q1 + q3 − 1. We eliminate q3 by b1(q) = 0 (b = c) and we call

Rfr(Hg(q2, 1− q1, 1− q1), (q1, q2), G, q1 ∈ Z≥0 and q1 + q3 − 1 = 0).

Note that (q2, 1−q1, 1−q1) = (a, c, c). Let us execute this procedure. The roots
of b-function for restriction is 0 and q1. The δ is 1 and Λ = {0}. As we have
seen in the proof of Proposition 2, the contiguity relation is(

(x− 1)∂ + c, (1− c) (x(x− 1)∂ + ax− c+ 1) ,−c2(a− c)
)

where −c2(a − c) = −(1 − q1)2(q1 + q2 − 1). Assume that q2 = a := q̄2 is a
generic number. The connected component of (86) are

(−∞, 1)× q̄2, (1,∞)× q̄2.

Then, Q = {0, 2}. When q1 = 0 (c = 1), the restriction module for Hg(a, 1, 1) is
a representative of the isomorphic class consisting of q1 = {0} and is C. When
q1 = 2 (c = −1), the restriction module for Hg(a,−1,−1) is a representative of
the isomorphic class consisting of q1 = {2, 3, . . .}. Since s0 = 2 in this case, the
restriction module is

C+ C∂ + C∂2

〈L|x=0, : ∂L : |x=0〉
=

C+ C∂ + C∂2

C∂
' C2

where : : denotes the normally ordered expression (see, e.g., [11, p.3]). Since the
b-function for the restriction is −c2(a − c) = −(1 − q1)2(q1 + q2 − 1), we need
to call recursively Rfr for each factor. For example, for the factor 1 − q1, we
call the procedure for Hg(a, 0, 0). The b-function for this contiguity is a(a+ 1).
Note that the degree of freedom of the parameters decreases when the recursion
depth increases.

We believe that these explain how this process works, so we will skip the
rest.

9 Restriction of Appell F1 System to the Origin

Applying methods discussed in previous sections, we obtain the following theo-
rem.

Theorem 5. The restrictions of the hypergeometric system for the Appell func-
tion F1 to x = y = 0 are as follows. They are C-vector spaces.

• When c /∈ Z≤0, it is C.

• When b = 0 and b′ = 0, it is (C · 1 + C · ∂x + C · ∂y).
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• When (b 6= 0 or b′ 6= 0) and a = 0, it is (C ·1+C ·∂x+C ·∂y)/(C ·(−b′∂x+
b∂y) .

• When (b 6= 0 or b′ 6= 0) and a 6= 0, it is (C ·∂x+C ·∂y)/(C ·(−b′∂x+b∂y)).

Our proof is analogous to the case of the Gauss hypergeometric system.
Several contiguity relations are used. They are obtained by our implementation
of our algorithms. Our implementation and details of the proof are published
in the internet4. The proof is omitted here.
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[16] V.Weispfenning, Comprehensive Gröbner bases, Journal of Symbolic Com-
putation, 14 (1992), 1–29.

33


