Holonomic methods in optimization, statistics, and machine learning

Nobuki Takayama (Department of Mathematics, Kobe University)

- 1. What is "holonomic"?
- 2. Holonomic gradient method (HGM) and maximal likelihood estimation (MLE) as a dynamical system
- 3. Some applications to optimization, statistics, and machine learning

Dimension in algebraic geometry

$$I : \text{ an ideal of } K[x] := K[x_1, \dots, x_n]. \ K = \mathbb{C}$$

$$\operatorname{ord}_u x^{\alpha} := \langle u, \alpha \rangle, \ x^{\alpha} := \prod_{i=1}^n x_i^{\alpha_i}$$

$$F_k : \bigoplus_{\operatorname{ord}_1(x^{\alpha}) \leq k} Kx^{\alpha}, \ 1 := (1, \dots, 1)$$

Hilbert polynomial for I:
$$H(k) = \dim_K \frac{F_k}{F_k \cap I}$$
.
Example: $n = 2$, $I = \langle x_1 x_2 \rangle$.
 $F_k/(F_k \cap I) = K + Kx_1 + \dots + Kx_1^k + Kx_2 + \dots + Kx_2^k$ then
 $H(k) = 2k + 1$.

The degree of H(k) w.r.t k is called the dimension of I. When V(I) is a complex manifold, it agrees with the dimension as the complex manifold.

Figure: $\frac{F_4}{F_4 \cap I}$, $I = \langle x_1 x_2 \rangle$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weyl algebra (the ring of differential operators with polynomial coefficients)

 $n = 1, x = x_1$. $D_1 = K \langle x, \partial_x \rangle, \ \partial_x x = x \partial_x + 1.$ I : a left ideal of D_1 . (1) $L, M \in I$, then $L - M \in I$. (2) If $L \in I$, then $ML \in I$ for any $M \in D_1$. Any left ideal I of D_1 is generated by a finite set of operators L_1, \ldots, L_m . Gröbner basis method works. f : a function. Action of ∂_x and x to f are defined respectively as $\partial_x \bullet f = \frac{df}{dx}$ and $x \bullet f = xf$. If a function f is annihilated by L_1, \ldots, L_m , then f is annihilated by any element of I.

Example: $I = \langle x \partial_x - 1, \partial_x^2 \rangle$. f = x is annihilated by I.

Any left ideal $I \ (\neq 0, D_1)$ of D_1 is called holonomic ideal.

How to define "holonomic" ideal in several variable case?

Weyl algebra: $D_n = K\langle x_1, ..., x_n, \partial_1, ..., \partial_n \rangle$ where $x_i x_j = x_j x_i$, $\partial_i \partial_j = \partial_j \partial_i$, $\partial_i x_j = x_j \partial_i + \delta_{ij} (\partial_i = \frac{\partial}{\partial x_i})$ $u, v \in \mathbb{R}^n$, $\operatorname{ord}_{(u,v)}(x^{\alpha}\partial^{\beta}) := \langle u, \alpha \rangle + \langle v, \beta \rangle$. Definition (I.N.Bernstein=J.Bernstein, 1972). $F_k = \bigoplus_{\operatorname{ord}_{(1,1)}(x^{\alpha}\partial^{\beta}) \leq k} Kx^{\alpha}\partial^{\beta}$. Let *I* be a left ideal of D_n . $H(k) = \dim_K \frac{F_k}{F_k \cap I}$. If the degree of the polynomial H(k) is *n*, we call *I* a holonomic ideal.

Fact: Holonomic ideal *I* contains ordinary differential operators for all directions of the form

$$\sum_{k=0}^{r_i} s_{ik}(x) \partial_i^k, \quad s_{ik}(x) \in K[x], \ i = 1, \dots, n$$
(1)

 Proof. *K*-linear map

$$p: F_k \cap K\langle x_1, \ldots, x_n, \partial_i \rangle \longrightarrow \frac{F_k}{F_k \cap I}$$

The dimension of the left hand side is $\binom{k+(n+1)}{n+1} = O(k^{n+1})$. Therefore, $p^{-1}([0])$ contains non-zero element. \square An ideal generated by ordinary differential operators may not be holonomic. Example: n = 2. $I = \langle L_1 := (x_1^3 - x_2^2)\partial_1 + 3x_1^2, L_2 := (x_1^3 - x_2^2)\partial_2 - 2x_2 \rangle$ $(I \bullet (x_1^3 - x_2^2)^{-1} = 0)$. $H(k) = \frac{k^3}{2} + 2k^2 + \frac{k}{2} + 2$. Then, I is not a holonomic ideal. Add $2x_1\partial_1 + 3x_2\partial_2 + 6$ to I, then it is a holonomic ideal.

Let R_n be the ring of differential operators with rational function coefficients; Rational Weyl algebra $R_n = \mathbb{C}(x)\langle \partial_1, \ldots, \partial_n \rangle$. J: generated by operators of the form (1).

Fact: $R_n J \cap D_n$ is holonomic ideal.

Example:
$$\frac{2}{p}x_1L_1 + \frac{3}{p}x_2L_2 = 2x_1\partial_1 + 3x_2\partial_2 + 6, p = x_1^3 - y_2^2.$$

Holonomic ideal is a nice class

Theorem 1 (I.N.Bernstein, 1972^1)

- 1. The degree of the Hilbert polynomial of a left ideal $I \subsetneq D_n$ of D_n is equal to n or more than n.
- If I is holonomic in D_n, then (I + x_nD_n) ∩ D_{n-1} (restriction ideal) and (I + ∂_nD_n) ∩ D_{n-1} (integration ideal) are holonomic in D_{n-1}.

Fact: If a rapidly decaying function f is annihilated by a holonomic ideal $I \subset D_n$, then the n-1 variables x' function $g(x') := \int_{-\infty}^{\infty} f(x) dx_n$ is annihilated by the integration ideal. Proof. $L = L_1 + \partial_n L_2 \in (I + \partial_n D_n) \cap D_{n-1}$. Then $L \bullet g(x') = \int_{-\infty}^{\infty} L_1 \bullet f \, dx_n + \int_{-\infty}^{\infty} \partial_n L_2 \bullet f \, dx_n = \int_{-\infty}^{\infty} \partial_n (L_2 \bullet f) \, dx_n$ $= [L_2 \bullet f]_{-\infty}^{\infty} = 0$

¹Analytic continuation of generalized functions with respect to a parameter, Functional Analysis and Applications 6, 26-40

History

- 1. Mikio Sato: founder of algebraic anallysis. 1960's 1990's.
- M.Kashiwara, T.Kawai, J.Bernstein, Z.Mebkout, ... : the theory of *D*-modules, regular holonomic systems, ... Applications to algebraic geometry, representation theory, ... 1970's — the present.
- 3. D.Zeilberger, ... : holonomic method to prove and derive identities. 1990's the present.
- 4. T.Oaku, N.T, U.Walther, ... : computational *D*-module theory. 1990's–2000's.
- T.Sei, A.Takemura, T.Koyama, N.T., ... : holonomic gradient method (HGM) and holonomic gradient descent, 2010's the present.

Definition: Let f be a distribution. If f is annihilated by a holonomic ideal, then f is called a holonomic distribution. If f is a classical function, f is called a holonomic function. Roughly speaking²,

- 1. A definite integral of a holonomic distribution is a holonomic distribution.
- 2. The sum, product (if it can be defined), derivatives of holonomic distributions are holonomic.

Example: n = 1, $x = x_1$. Y(x) = 1 ($x \ge 0$), Y(x) = 0 (x < 0) be the Heaviside function. $x\partial_x \bullet Y = 0$. Then $(x\partial_x - 1) \bullet xY(x) = 0$. The function $\sigma(x) = xY(x)$ is called ReLU (rectified linear unit) in machine learning.

$$g(a, b, c) = \int_{\mathbb{R}^2} \exp(-au^2 - 2buv - cv^2)\sigma(u)\sigma(v)dudv$$
 is a holonomic function w.r.t. a, b, c .

²e.g.,

https://www.math.kobe-u.ac.jp/HOME/taka/ascm2003-paper.pdf 🗉 🛌 🕤 🤉

Exercise: Which are holonomic distributions?

- 1. $\exp(f(x_1, \ldots, x_n))$ where f is a rational function,
- 2. sin(x).
- 3. $\exp(x_1 \cos(t) + x_2 \sin(t))$
- 4. $\frac{1}{\sin x}$ [Hint] Use Th: Any solution of the ordinary differential equation $(a_m(x)\partial^m + \cdots + a_0(x)) \bullet f = 0, a_i \in \mathbb{C}[x]$, is holomorphic out of the singular locus $\{x \mid a_m(x) = 0\}$.
- 5. $\frac{1}{1+\exp(-x)}$ (sigmoid function).
- 6. $\Gamma(x)$, [Hint] $\Gamma(x)$ has poles at x = -n, $n \in \mathbb{N}_0$.
- 7. x^a where *a* is a constant,

8. |x|,

9.
$$\int_{-\infty}^{+\infty} \exp(-xt^6-t)dt$$
, $x > 0$.

Todo, function graph.

2. Holonomic gradient method (HGM) and maximal likelihood estimation (MLE) as a dynamical system

Let *I* be a holonomic ideal in D_n which annihilates a holonomic function *f*. Then $R_n I$ is a zero dimensional ideal in R_n . $r := \dim_{\mathcal{K}(x)} \frac{R_n}{R_n I}$ is called a holonomic rank. s_1, \ldots, s_r : basis of $\frac{R_n}{R_n I}$. Put $F = (s_1 \bullet f, \ldots, s_r \bullet f)^T$. *F* satisfies Pfaffian equations: $\frac{\partial F}{\partial x_i} = P_i(x)F$ (2)

where P_i is a $r \times r$ matrix with rational function entries ³.

HGM to evalute $Z(x') = \int_D f(x) dx_{m+1} \cdots dx_n$ for holonomic f

(1) Compute the integration ideal (2) Derive Pfaffian equations. (3a) Evaluate a value of F at a relevant point. (3b) Extend the value by numerically solving the Pfaffian equations. ³ P_i can be constructed by Gröbner basis. Maximal likelihood estimation (MLE)

Example: unnormalized Von-Mises distribution on $S^1 \ni x$: $u(\theta, x) = \exp(\theta_1 \cos x + \theta_2 \sin x)$. (Holonomic) normalizing constant is

$$Z(heta) = \int_0^{2\pi} \exp(heta_1 \cos x + heta_2 \sin x) dx$$

 $F = (Z, \partial_1 Z)^T$, $\partial_i = \partial/\partial \theta_i$. Pfaffian system is

$$\frac{\partial F}{\partial \theta_1} = \begin{pmatrix} 0 & 1\\ \frac{\theta_1^2}{\theta_1^2 + \theta_2^2} & \frac{\theta_2^2 - \theta_1^2}{\theta_1(\theta_1^2 + \theta_2^2)} \end{pmatrix} F =: P_1 F$$

$$\frac{\partial F}{\partial \theta_2} = \begin{pmatrix} 0 & \theta_2/\theta_1\\ \frac{\theta_1 \theta_2}{\theta_1^2 + \theta_2^2} & \frac{-2\theta_2}{\theta_1^2 + \theta_2^2} \end{pmatrix} F =: P_2 F$$

Fisher's MLE. X_i is observed data. Find θ which maximizes the likelihood

$$\ell(\theta; X) = \prod_{i=1}^{N} \frac{u(\theta, X_i)}{z(\theta)} \quad \text{are solved by a set of the set$$

Let $f = \log \ell(\theta; X)$ be the log likelihood. The gradient descent updates $\theta = (\theta_1, \theta_2)$ by (new θ) = $\theta + \alpha \nabla_{\theta} f$. Then⁴,

$$\dot{\theta} = \nabla_{\theta} f = \sum_{i=1}^{n} \frac{\nabla_{\theta} u}{u} - n \frac{\nabla_{\theta} F_1}{F_1}$$

From the chain rule and the Pfaffian equations,

$$\dot{F}_i = \dot{\theta}_1 (P_1 F)_i + \dot{\theta}_2 (P_2 F)_i$$

$$\dot{\theta}_1 = \sum_{i=1}^N \cos(X_i) - N \frac{(P_1 F)_1}{F_1}$$
(3)

$$\dot{\theta_2} = \sum_{i=1}^{N} \sin(X_i) - N \frac{(P_2 F)_1}{F_1}$$
(4)

$$\dot{F}_{i} = \left(\sum_{i=1}^{N} \cos(X_{i}) - N \frac{(P_{1}F)_{1}}{F_{1}}\right) (P_{1}F)_{i} + \left(\sum_{i=1}^{N} \sin(X_{i}) - N \frac{(P_{2}F)_{1}}{F_{1}}\right) (P_{2}F)_{i}$$
(5)

i = 1, 2.

⁴U.Helmke, J.Moore, Optimization and Dynamical Systems, 1994 E S S (13/26)

MLE for Von-Mises distribution

Figure: Wind direction at 10,000 meters above Sapporo, AM 9, 2011/1/1-2011/1/14 (1/11 missing)

maxarg_{θ} $\prod_{i=1}^{13} \frac{u(\theta, X_i)}{z(\theta)}$ where X_i is the direction in the figure.

Vector field of (3), (4), (5)

Figure: Vector field on (θ_1, θ_2) space

MLE for Von-Mises distribution

Solving (3), (4), (5), by the initial value (θ ; F) = (-1.62, -0.1; 9.82246, -6.12855), we have $\theta = (\theta_1, \theta_2) = (-0.1038, -1.6228)$.

Figure: Wind direction distribution estimated by MLE

Figure: $\theta(t) \equiv F \equiv F \equiv O \subseteq O = 16/26$

Maximal likelihood estimation (MLE) as a dynamical system

Theorem 2

If an unnormalized distribution $u(\theta, x)$ is a holonomic distribution⁵, then MLE w.r.t $u(\theta, x)$ and data in x space can be described by a dynamical system.

⁵and $\int_{\Omega} u(\theta, x) dx$ satisfies the integration ideal, u is smooth on a data x space and a parameter θ space

3. Some applications of HGM

https://www.math.kobe-u.ac.jp/OpenXM/Math/hgm/ref-hgm.html openxm hgm search.

- 1. Finding the integration ideal $(I + \partial_{m+1}D_n + \cdots + \partial_n D_n) \cap D_m$: by hand (theoretical consideration) or by a new efficient algorithm.
- Numerical algorithms to solve an ordinary differential equations (of huge size)⁶.

⁶https://arxiv.org/abs/2111.10947

Fisher-Bigham distribution (\supset Von-Mises distributuion)

 $\frac{1}{Z(x,y,r)} \exp\left(\sum_{1 \le i \le j \le d+1} x_{ij} t_i t_j + \sum_{i=1}^{d+1} y_i t_i\right) |dt| \text{ where } Z \text{ is the normalizing constant}$

$$Z(x, y, r) = \int_{S^{d}(r)} \exp\left(\sum_{1 \le i \le j \le d+1} x_{ij} t_{i} t_{j} + \sum_{i=1}^{d+1} y_{i} t_{i}\right) |dt|.$$
 (6)

• H.Nakayama et al, Holonomic Gradient Descent and its Application to Fisher-Bingham Integral (2011)⁷.

• A.Kume, T.Sei, On the exact maximum likelihood inference of Fisher–Bingham distributions using an adjusted holonomic gradient method (2018)⁸

• S.Matsui, Finding initial values for MLE of the Fisher-Bingham distribution by a neural network (Kobe Univ. master thesis), 2024.

⁷https://doi.org/10.1016/j.aam.2011.03.001

Let X_i be a random column vector whose distribution is the *m*-dimensional multivariate normal (or Gaussian) distribution with mean vector 0 and covariance matrix Σ . $X = (X_1, \ldots, X_n)$.

Theorem 3 (Constantine (1963))

Let ℓ_1 be the maximal eigenvalue of $W = XX^T$. Then the probability that ℓ_1 is smaller than x is

$$P[\ell_1 < x] = C \exp\left(-\frac{x}{2} \operatorname{Tr} \Sigma^{-1}\right) x^{\frac{1}{2}nm} {}_1F_1\left(\frac{m+1}{2}; \frac{n+m+1}{2}; \frac{x}{2} \Sigma^{-1}\right)$$
(7)

Here,

$${}_{1}F_{1}(a;c;Y) = \frac{\Gamma_{m}(b)}{\Gamma_{m}(a)\Gamma_{m}(c-a)} \int_{0 < X < I_{m}} \exp(\operatorname{Tr} XY) |X|^{a-(m+1)/2} |I_{m}-X|^{c-a-(m+1)/2} dX$$
(8)

is a holonomic function.

WishartHGM

- 1 #install.packages("hgm")
- 2 library("hgm")
- 3 hgm.pwishart(m=3,n=5,beta=c(1,2,3),q=3)
- 4 [1] 3.0242949 0.5247871 ... # it means P(ell<3.024)=0.524
- 5 plot(hgm.pwishart(m=3,n=5,beta=c(1,2,3),q=10,autoplot=1))

Figure: A graph of $P(\ell_1 < x)$

- Holonomic gradient method for the distribution function of the largest root of a Wishart matrix $(2013)^9\,$

Neural tangent kernel

 $f(\theta, x)$: $\mathbb{R}^{d_0} \xrightarrow{am} \mathbb{R}^{d_1} \xrightarrow{\sigma} \mathbb{R}^{d_1} \xrightarrow{am} \mathbb{R}^{d_2} \xrightarrow{\sigma} \mathbb{R}^{d_2} \rightarrow \cdots \rightarrow \mathbb{R}^{d_{L+1}}$, "am"'s are affine maps with parameter θ . σ is an activation.

Theorem 4 (Jacot et al 2018^{11})

When width d_i of neural network (NN) goes to ∞ , the neural tangent kernel (NTK) $\left\langle \frac{\partial f(\theta, x)}{\partial \theta}, \frac{\partial f(\theta, x')}{\partial \theta} \right\rangle$ converges to $\Theta(x, x')$ in probability w.r.t. θ .

¹¹https://arxiv.org/abs/1806.07572

$$f(x) \sim (\Theta(x, x_1), \Theta(x, x_2), \dots, \Theta(x, x_N))(H^*)^{-1}(y_1, y_2, \dots, y_N)^T.$$
(9)
$$H^* = (\Theta(x_i, x_i)) \text{ where } x_i \text{ is input and } y_i \text{ is output. Definition of}$$

 $H^* = (\Theta(x_i, x_j))$ where x_i is input and y_i is output. Definition of Θ :

$$\Sigma^{(0)}(x, x') = x^{T} x',$$
 (10)

$$\Lambda^{(h)}(x,x') = \begin{pmatrix} \Sigma^{(h-1)}(x,x) & \Sigma^{(h-1)}(x,x') \\ \Sigma^{(h-1)}(x',x) & \Sigma^{(h-1)}(x',x') \end{pmatrix}$$
(11)

$$\Sigma^{(h)}(x,x') = c_{\sigma} E_{(u,v) \sim N(0,\Lambda^{(h)})}[\sigma(u)\sigma(v)]$$
(12)

$$\dot{\Sigma}^{(h)}(x, x') = c_{\sigma} E_{(u, v) \sim N(0, \Lambda^{(h)})}[\dot{\sigma}(u)\dot{\sigma}(v)]$$
(13)

$$\Theta(x, x') = \Theta^{(L)}(x, x') = \sum_{h=1}^{L+1} \left(\Sigma^{(h-1)}(x, x') \prod_{h'=h}^{L+1} \dot{\Sigma}(x, x') \right)$$
(14)

<ロト < 回 > < 直 > < 直 > < 亘 > < 亘 > < 亘 > < 亘 > 23 / 26

Dual activation

 $E_{(u,v)\sim N(0,\Lambda^{(h)})}[\sigma(u)\sigma(v)] \text{ (dual activation of } \sigma)$ $\hat{E}[\sigma(u)\sigma(v)] = \int_{\mathbb{R}^2} \sigma(u)\sigma(v) \exp(x_{11}u^2 + 2x_{12}uv + x_{22}v^2) dudv$

$$E_{(u,v)\sim N(0,\Lambda^{(h)})}[\sigma(u)\sigma(v)] = \hat{E}[\sigma(u)\sigma(v)]\frac{\sqrt{\det(x)}}{\pi}, \quad \Lambda^{(h)} = -\frac{1}{2}x^{-1}.$$

- ReLU (rectified linear unit)¹²: $\sigma(u) = uY(u)$.
- GeLU (Gaussian error linear unit): $\sigma(u) = \frac{1}{2} \left(1 + \operatorname{erf} \left(\frac{u}{\sqrt{2}} \right) \right)$

Evaluation of the dual holonomic activation can be perfomed by a HGM type algorithm.

A.Sakoda, N.Takayama, An Application of the Holonomic Gradient Method to the Neural Tangent Kernel, 2024¹³. ¹²https://en.wikipedia.org/wiki/Activation_function ¹³http://arxiv.org/abs/2410.23626 Our algorithm ulitizes holonomic system for the expectation w.r.t. Gaussian distribution by T.Koyama and A.Takemura¹⁴ and the restriction algorithm of T.Oaku¹⁵.

Example: $\sigma(u) = Y(u) \sin(u)$. Interpolation by NTK Θ of $\sin(\pi x)$ with values at 15 points.

¹⁴https://doi.org/10.1007/s13160-015-0166-8, Calculation of Orthant Probabilities by the Holonomic Gradient Method (2015)

¹⁵https://doi.org/10.1006/aama.1997.0527 Algorithms for *b*-function, restrictions, and algebraic local cohomology groups (1997).

Summary

- 1. Holonomic functions or distributions are nice class of functions.
- 2. We can apply algebra and computer algebra to evaluate them $({\rm HGM}).$
- 3. MLE with respect to a holonomic unnormalized distribution can be described by a dynamical system.
- 4. HGM is applied to optimization, statistics, neural tangent kernel, physics, ...