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L? Boundedness of Higher Order Schrodinger Type Operators
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Abstract. We consider higher order Schrodinger type operators with nonnegative
potentials. We assume that the potential belongs to the reverse Holder class which
includes nonnegative polynomials. We establish estimates of the fundamental solution
and show L? boundedness of some Schrodinger type operators. We use pointwise
estimates by the Hardy-Littlewood maximal operator to prove our results.
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1. Introduction

Let V(x) be a nonnegative potential and consider the Schrodinger type
operators H; = (—A)k+ VK on R", where k is a positive integer and n >
2k +1. When V is a nonnegative polynomial, Zhong proved estimates of the
fundamental solution for H; and H, and showed some estimates for H; and
H, ([16]). More precisely, he showed the L?” boundedness of the operators
VH', VI2VH[!, and V?*7/?V/H;!, where j=0,1,2,3,4. Recently, in [10],
the authors showed the L? boundedness of the operators V*H A L yvikg pa I and
Vka_ 2 for nonnegative polynomial potentials V.

For the potential V' which belongs to the reverse Hdélder class, which in-
cludes nonnegative polynomials, Shen generalized Zhong’s results on H; ([11]).
Actually, he established estimates of the fundamental solution for H; and
showed the L” estimates for the operators VH[ !, V'2VH ' V?H[! and so
on. For the operator H; with reverse Holder class potentials, further results
have been investigated by many researchers. See [1], [3], [6], [7], and [12], for
example. For the operator H, with reverse Holder class potentials, in [13], the
author established estimates of the fundamental solution for H, and showed
the L? boundedness of the operators V>7//2V/H;! where j=0,1,2,3,4. For
the operator H», further results have been shown by several researchers. See [2]
and [9] for example. Recently, in [14], the author established estimates of the
fundamental solution for H,», where m is a positive integer satisfying m > 2,
and showed the L? boundedness of the operators V2" ~//2V/H;! where j is an
integer satisfying 1 < j <27+l — 1.
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As mentioned above, in [10], the authors proved some results on Hj =
(—A)k + V'*, where V is a nonnegative polynomial and k is an integer satisfying
k > 3. The purpose of this paper is to show a result on H; = (—A)k + vk,
where k is an integer satisfying k > 3, with potentials  which belong to the
reverse Holder class, which includes nonnegative polynomials.

We recall the definitions of the reverse Holder class (e.g. [11]). We denote
by B(x,r) the ball centered at x with radius r.

Definition 1.1 (Reverse Hdlder class). Let V' > 0.
(1) For 1 < p<co one says that Ve (RH),, if Ve Lj,
exists a positive constant C such that

1/p
I , C
(11) (’B(X, V)| JB(x,r) V(y) dy) = ‘B(X, V)l JB(x,r) V(y)dy

holds for every xe R" and 0 < r < co.
(2) One says that Ve (RH)_, if Ve L},
constant C such that

(R") and there

(R") and there exists a positive

C

(12) IV ieote = (g ] VO
L=(BCer) = B(x, r)| B(x,r)

holds for every xe R" and 0 <r < o0.

Remark 1.2. (1) For 1 < p < o, it is easy to see (RH), C (RH),.

(2) If P(x) is a polynomial and o >0, then V(x) = |P(x)|” belongs to
(RH),, ([4, page 146]).

(3) If Ve(RH), then V*e(RH), for every o >0 ([8, Lemma 1]).

Definition 1.3 ([11, Definition 1.3]). Let V e (RH),, and V' #0. Then
it is well-known that there exists a positive ¢ such that Ve (RH),, . ([5,
Lemma 2]). Then the function p(x, V) is well-defined by

1 r?
(1.3) m:sup{r>0:mjlg(w) V(y)dy < 1}

and satisfies 0 < p(x, V') < oo for every x € R".

Remark 1.4. (1) If V e (RH)_, then there exists a positive constant C such
that V(x) < Cp(x, V)? for a.e. xe R" (11, Remark 2.9)).

(2) If Ve (RH),, p=n/2, then there exists a positive constant C such
that

1/p
1 ) e
(1.4) <—| B, r)‘JBW) V(y) dy) < Cp(x, V)

for every xe R" and 0 <r < oo ([13, Remark 2]).
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Let o = (ay,...,0,) denote the multi-index with o; e N, ie N, | <i<n.
Define x* = x{'...x% and V/ = 0% = 8/l /(ox?" ... ox2) for j=|a| = oy + - +
,. For any positive integer j and a function u e C/(R"), denote V/u(x) =
(0"u(x) : |o) = j) and [V/u(x)|* =Y, 10"u(x)]>. We denote by I'y,(x, y) the
fundamental solution for Hy, where k is a positive integer. The operator H, !
is the integral operator with I'y (x,y) as its kernel.

Now we state our theorem.

Theorem 1.5. Let j, k, and n be integers, k > 1, 0 < j<2k—1, and n >
2k +1. Suppose that V e (RH),. Then there exists a constant C such that

(1.5) VIRV~  + VS f gy < CUANLoerys
where 1 < p < o and f e Cy(R").

Remark 1.6. In Theorem 1.5, the case kK = 2" was shown in [14, Theorem
28].

To prove Theorem 1.5, we need the estimates of the fundamental solution.
Let / and m be integers, m >0, and 1 </ <2". We consider Hymom1 =
(=)*" "+ w2 on R", where W >0 and n>2(2"+1)+1. We denote
by I, ,..(x,») the fundamental solution for Hjmjymn. The operator

H,,! L1 ann 18 the integral operator with Iy, ... (x,y) as its kernel.

Theorem 1.7. Let I, m, and n be integers, m>0, 1 <[<2" and n>
22"+ 1)+ 1. Suppose that W € (RH )y, am ;) and that there exists a positive
constant C such that p(x, W) < C. Then for any positive integer N there exists
a positive constant Cy such that

- Cy ' 1

Tl W)l =Y e — e
Theorem 1.8. Let j, I, m, and n be integers, m >0, 1 <[ <2" 1<j<

22" +1) =1, and n=22"+1)+ 1. Suppose that W € (RH)yuur,/000mi1)-)

and that there exists a positive constant C such that p(x, W) < C. Then for any

positive integer N there exists a positive constant Cy such that

Cy 1
=< N’ 2027+
{L4+p(e, M)x =y} |x—y|" /

(16) (0 g)FH2/71+1?2m+1 (x7 y)

(L7)  WV/Th,,, . (%))l

Remark 1.9. In Theorems 1.7 and 1.8, the case / =2" was shown in
[14, Theorems 9 and 10] without the assumption p(x, W) < C.

The plan of this paper is as follows. In Section 2, we describe some
lemmas needed to prove Theorems 1.7 and 1.8. In Section 3, we prove
Theorems 1.7 and 1.8. Finally, in Section 4, we prove Theorem 1.5.
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Throughout this paper the letter C stands for a constant not necessarily
the same at each occurrence.

2. Preliminaries
In this section, we describe some lemmas needed later.

Lemma 2.1 ([11, Lemma 1.4 (b), (c)]).
(1) Suppose that V € (RH),,. Then there exist positive constants C and
ko such that, for x,y e R",

(2.1) p(1, V) < C{1+p(x, V)lx =y} p(x, V).

(2) Suppose that V € (RH),,. Then there exist positive constants C and
ko such that, for x,y e R",

Cp(x, V)
(2.2) p(y, V)= :
{1+ p(x, V) — plp oot
Lemma 2.2 (Caccioppoli type inequality, [14, Lemmas 13 and 15]). Let
i, j, I, and m be integers, m >0, 1 <1 <2" and 1 <i<j<2" 41 Assume
that (—A)*" ™ u+ W2""'u =0 in B(xo, R) for some xo € R". Then there exists a
positive constant C such that

2m+l

(2.3) \Vzmﬂﬂl_ju(x)\zdx + J W(x)" Ju(x)||4%" 1 u(x)|dx

J B(x0, R/2) B(xo,R/2)

1
st CZ]:RZi
1=

Lemma 2.3. Let j, [, and m be integers, m >0, 1 <[ <2" and 0 < j <
2m 41 —1.  Assume that (—A)*" Tu+ W2""'u =0 in B(xo, R) for some xo € R".
Then there exists a positive constant C such that

JB( R) V2" 2y () P,
X0,

2M 41
1 T
u(x)Pdx < C Y 7J IV 7u(x)|*dx.
j:() R2(2 l_]) B(X(),R)

2m+l

(2.4) J W(x)
B(x0, R/2)
Proof. Case [ is an even number: Let ¢ and b be nonnegative integers
satisfying a +b < (2" +1)/2. We choose #ne C;°(B(xo,R)) such that =1
on B(xo,R/2) and |V?(4%)| < C/R¥+H+2""'=2"+) " Note that, there exists a
positive constant C,, 7,5 such that

(25 AP Pu)n(x)* T = YT GV (AR ) (x)

a>0,b>0
ath<(2"+1)/2

. Vh(AanZ”’-‘rl-i-l)(x),
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where

(26) Vb(A(Z”’Jrl)/Zfafbu)(x) . Vb(Aa”Z’”+l+l)(x)

n ab
- Z 8)(1'1 ﬁxiz e 8xl~b

l'l,l'z,...q,l'<2m+[)/2:1

? [ o o?
(2M+41)/2-a—b
(2 (2 )
0x;,0x;y - .. O0x;, \ Ox2 \ Ox? ox? ‘

(See [15, Lemma 2.6].) Multiplying (—4)* "u+ W2""u =0 by up?"+'*! and
integrating over R" by integrating by parts, we have

2m+1

(2.7) | A" D2y (x)|2dx + J w(x)*" u(x)|Pdx

J B(x0,R/2) B(xo, R/2)

< CJ 14" D2y (x)|
B(xo, R) azoz,b:zo
l<at+b<(2™+1)/2
. |Vb(A (2'"+Z)/27a7bu)(x) . Vb(A“nz'"““)(xﬂdx.

Let ¢ be a positive real number which will be determined later. Then the right
hand side of (2.7) is bounded by

es) ¢ > VA )
B(X(),R)

a>0,b>0
I<a+b<(2"+1)/2

1
" R2a+br2m T —(2m])

Sl =

‘Vb(A (2”7+l)/2—a—bu) (X) ]dx

B(xo, R) a>§>0
I <a+b<(2"+1)/2

1 1
e R22avby2mTo(2my

+ 5 yv"(A<2’"+’>/2—“—”u)(x)\2> dx.
Then choosing ¢ such that Ce{(2" +1/)/2}{(2" +1)/2+1}/2 =1 we arrive at
the desired inequality.

Case / is an odd number: Let a and b be nonnegative integers satisfying
a+b<(2"+1-1)/2. We choose ne C;(B(xp,R)) such that =1 on
B(xo, R/2) and |V*!(4%)| < C/R¥+0+2"=@"+1=1) © Multiplying (—4)*"u +
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W2 =0 by up?" ! and integrating over R" by integrating by parts, we
have

(29) J |V(A<2m+[—l)/2u)(x)|2dx +J W(x>2m+1 ’u(x)|2dx
B(xo0, R/2) B(xo, R/2)
= CJ > WA ()
B(xo, R) a>0,b>0

I<a+b<(2™+41-1)/2

VP AT HED2mambyy () W (A2 ) (x) | dox

| S A )
B(x0,R) 450,620
a+b<(2"+1-1)/2
. |Vb(A(2’”+171)/27a7bu)(x) . Vb+1(Aai’]2m+l+l)(x)’dx.
Then by the same argument as the case k£ is an even number, we arrive at the

desired inequality. [

Lemma 2.4 (cf. [14, Lemma 17]). Let j, I, m, and n be integers,
m>0, 1</<2”" n=22"+0)+1, and 0<j<2"+1—1. Assume that
(=) Tu+ w2 u=0, u>0, in B(xo,R) for some xoeR". Then there
exists a positive constant C such that

-1 1 _ ) 1/2
2.10) sup  |u(y)|<C R/ 7J Viu(x)|"dx | .
( yeB(xy,R/2) ( )’ ]Z(; |B(X(), R)| B(xo,R) ’ )’

Proof. We can prove Lemma 2.4 by the same way as in the proof of
[14, Lemma 17]. We omit the details. []

Lemma 2.5 ([14, Lemma 19]). Let m and n be integers, m >0, and n >
2"t 4 1. Suppose that W e (RH), - Then there exists a positive constant C
such that

(2.11) lp(-, W)

where 1 < p < o0.

2m+l

H27m172meLP(R") S C||f||LP(R")7

Lemma 2.6 ([14, Lemma 20]). Let j, m, and n be integers, m >0, n >
2m+l 1 and 1 < j<2™ — 1. Suppose that W e (RH),, for some qq satisfy-
ing n/2 <qo<2"n/(2"" — j). Then for 1< p < py there exists a positive
constant C such that

2m+1

(2.12) oG W) VI HL S f gy < CU N ey,

where 1/po =2"/qo — (2" — j)/n.
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Let / and m be integers satisfying m >0 and 1 </ <2". For the case
go=n/2 in Lemma 2.6, if 1 <;j<2"+/—1 and n>2(2" +1/)+1, letting
p =2 we have

Corollary 2.7. Let j, I, m, and n be integers, m>0, 1 <[/ <2™, n>
22"+ +1,and 1 < j<2™+1—1. Suppose that W € (RH),,. Then there
exists a positive constant C such that

_jVsz_mlﬁszHLZ(R”) < CHfHLZ(R”)

2m+1

(2.13) lp(, W)

3. Proofs

In this section, we prove Theorems 1.7 and 1.8. To prove Theorem 1.7,
we need the following lemmas.

Lemma 3.1. Let j, [, m, and n be integers, m>0, 1 <] <2" n>
22"+ 10+ 1, and 1 < j<2(2"+1)— 1. Suppose that W e (RH), for some
qo satisfying n)2 < qo < 2" 'n/{22™ +1) — j}.  Assume also that (—4)*" T+
w2 =0 in B(xo, R) for some xo € R". Then there exists a positive constant
C such that

1/t
(3.1) J V7 u(x)|"dx
B(x0,R/2)

< CRY""'na0=22"+) (1 4 R2C"+) (o W)

2m+2

boosup Ju(y)l,
yeB(xg,R)

where 1/t =2 /gy —{2(2™ + 1) — j}/n.

Proof. We show Lemma 3.1 by a method similar to the one used in the
proof of [11, Lemma 4.6]. Let ¢ and b be nonnegative integers satisfying 1 <
a+b<2"+1[ We choose ne C;°(B(xo,R)) such that # =1 on B(x,3R/4)
and |V°(4%)| < C/R**". We denote by Ipy(x,y) the fundamental solution
for (—4)*"™. 1t is known that there exists a positive constant C such that
0 < Iy(x,y) < Clx — p*@" 7" (See [10].) Note that, there exists a positive
constant C,, ;45 such that

2m+]

(3.2) u<x>n<x>=j Lo ) | =)™ u(rn(y) + (=)

n

> CuratV (AT ) () V(A y) (y) | dy.

a>0,6>0
1<a+b<2™M+1
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Then integrating by parts, for x € B(xy, R/2), we have

m+1
: W ()" Ju(y)] n(y)]
63 W =c| [up)ln)
B(x0, R) |X o y| 202m+1) 4+

¢ | jutniay
R1-2QT DA b2 I mab)2atb [

+

2n7+l

W(y)
w202y Y

<C sup |u(y) j
yeB(xo, R) B(xo,R) |X — |
C

+ J u(y)|dy.
R B(XO,R)\ ()l

It then follows from the well-known theorem on fractional integrals that

1/t
(3.4) (J V7/u(x)| ’dx)
B(x0, R/2)

2m+l/qo
<C sup |u(y) (J W(x)‘”’dx)
B(xo,R)

yEB(X(),R)

+ CRZmHn/qo_z(zm_H) sup |u(y)|
y€B(x0,R)

< CR2"1+1n/z1072(2”1+1){1 + R2(2’”+l)p(xO’ W)Z”’“} sup |u(y)|’
y€B(xo, R)

where 1/t =2""1/gy —{2(2" +1) — j}/n and we have used Remark 1.4 (2).
Then the proof is complete. []

Ifn>22"+1)+1and 1 <j<2"41—1, then letting gy = 2"n/(2" + 1)
in Lemma 3.1 we have

Corollary 3.2. Let j, [, m, and n be integers, m>0, 1 <[ <2 n>
22"+ 1) +1, and 1 < j<2"+1—1. Suppose that W € (RH)ym,amyy and
that (—A)* ™u+ w2 u =0 in B(xo, R) for some xo € R". Then there exists a
positive constant C such that

. 12
—_— lu X 2 X
G2) <|B<xo,R/2>| Loy 0P8 )

C 1 + R2(2m+1)p xo’ W 2m+2
< RO ) up Ju(l
y€B(xp,R)
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In Corollary 3.2, if we assume that there exists a positive constant C such
that p(xo, W) < C then we have

Corollary 3.3. Let j, I, m, and n be integers, m>0, 1 <[ <2™ n>
22"+ +1, and 1 < j<2™+1—1 Suppose that W € (RH)ym,/amyy and
that (—A)* u+ W 'u=0 in B(xo,R) for some xo € R". Assume also that
there exists a positive constant C such that p(xo, W) < C.  Then there exists a
positive constant C' such that

| 12
—_———— ju X 2 X
(3.6 <|B(X0,R/2)|J3(x0,1e/z) Viutold )

c'{1 —I—Rp X0, W) 2(2™m+1)
< LRI sup (o)
ye€B(xo, R)

Lemma 34. Let j, I, m, and n be integers, m>0, 1 <[/ <2", n>
22"+ +1,and 0 < j <2"+1— 1. Suppose that W € (RH), ;. Then there
exists a positive constant C such that

2411

(3.7) > Ln plx, W) |7 iu(x) Pdx
J=0

2m+l

< c(J ,1 142" u(x)|2dx + Ln W (x) |u(x)|2dx>,

where ue Ci°(R").

Proof. By the case p=2 in Lemma 2.5 and Corollary 2.7, we have

2411

68) X | ple ) i P
RVI

=0
<C| =D+ W ) dy

2m+l

< c(J “ |A2mu(x)|2dx+J W (x)

\u(x)|2dx>. O
R

Lemma 3.5. Let [, m, and n be integers, m >0, 1 <[ <2™, and n >
22" +1)+ 1. Suppose that W € (RH )y, am ) and that (=) My w2y
= 0 in B(xo, R) for some xo € R". Then for any positive integer N there exists a
positive constant Cy such that
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Cy

(3.9) sup  |u(y)| <
yeB(xo, R/2) {1+ Rp(xo, W)}V
241 1 ' , 1/2
. R’ 7J Viu(x)|"dx .
2 R\ Bl R )

Proof. Let 5eCy(B(xo,R/2*")) such that n=1 on B(xo,R/2*"*"),
\V/y| < C/R/, where j is an integer satisfying 1 < j <2"*!' —1. Applying
Lemma 3.4 to uy we have

2" 41-1

(3.10) p(x, W)z(zmﬂfj) V7 u(x)|2dx

= JB(me/zZ'"“)

<C J 147" u(x)2dx + J W (x)>" Ju(x) | Pdx
B(xo, R/22™) B(xo, R/22™)

= C(Il + 12).

We estimate /;. We show that, for all integer / satisfying 1 </ <2,

2" -1
1 2
(3.11) L <C 7J V*u(x)| dx.
; R Jpi, )

First we show the case / = 2”. From the case / = 2" and j = 2! in Lemma
2.2, we deduce that

1 m+l__; 2
3.12) L <C —.J V2" T u(x)| dx
( Z; R B<x0,R/zzM)’ (x)]
2/11+171 1 5
=C TJ VEu(x)|dx.
“— Rz(z k) B(xo,R/22"7*1)| ( )|

This means that (3.11) is true for /=2". Let a be an integer satisfying
0<a<2™—-2. We assume that (3.11) is true for / =2" —a and show the
case /[ =2" —a—1. From the inductive assumption we deduce that

2m+l —a—1
Y 1

(3.13) L <C Z R ‘Vku(x)lzdx.
k=0

J‘B(X07R/221n“1)

Note that, (3.13) is equivalent to
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1 m+1
3.14 L <Cl——o p2r el 2d
(3.14) b= <R2(“+1) JB(xo.,R/zzm-“-l)| ol

=1
R2(a+2) B(xo, R/22"—a-1)

1
R2_2m+l

+ V2" a2 (x) Pdx

j () 2dx
B(xo, R/22m*"*1)

- C(Jg+1 + Jg+2 +-- 1+ J2m+1).

From the case / =2" —a—1 and j=2"*!' —g—1 in Lemma 2.2, we deduce
that

C —a-1 1 m+1 P
315) gy < ——— — v2 ey (x| d
G19) Jot S T X By s ()
C 2’”“—0—2 1 J k )
- = —_—— Vou(x)|"dx
R2(a+1) ; R2(2 l—a—1-k) B(xo,R/ZZ’"*ﬂfz)’ ( )‘
2m+17072 1 k )
=C —+J Vou(x)| dx.
“— R2(2 k) B(xo,R/22'”fuf2)| ( )‘
Combining (3.14) with (3.15) we have
2”1+1,a,2 1
3.16 L<C 7J V¥ u(x) | dx.
(3.16) 2 REETH B(xo,R/22"’—"—2)| (x)|

This means (3.11) is true for / =2" —a — 1. Hence (3.11) is true for all integer
[ satisfying 1 </ <2". From (3.10), (3.11), and Lemma 2.3 it follows for each
integer / satisfying 1 </ < 2™ that

2" 41-1

(3.17) p(x, W)Y D \iy(x) | 2dx

= JB(xO,R/ZZ'"“)

27411 1 _ ,
<C TJ |Vfu(x)| dx.
jZO RZ(Z 1_.]) B(X(),R)

From Lemma 2.1 (2) it follows for each integer j satisfying 1 < j <2"+/—1
that
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C{1 + Rp(x, W)}Z(Zm“fi)ko/(koﬂ) R
{Ro(x, WP RV

(3.18) IV u(x)|2dx <

JB(XO,R/22’"“)

2" 41-1 R2

— Viu(x)| dx.
> 2L<XO,R>' )|

i=0

Then we have

2my]—1 - 1 - , ]/2
3.19 R’ — J VZu(x)| dx
( ) Z ‘B(XO,R/22 +1)‘ B(Xo,R/22”7+l) | ( )|

j=0
C
< -
{1+ Rp(xo, W)}2(2”’*'ﬁ)/(ko+1)

21 1 ' ) 1/2
Y R 7J Viu(x)2dx |
Z |B(X0, R)’ B(xo,R)

i=0

Repeating above argument, for any positive integer K we have

a1 1 . , 1/2
3.20 R/ J VZ/u(x)| dx
(3:20) ,z(; | B(xo, R/2(2" DK B(xo,R/Z(Z”’“)K)’ Gl

< Ck
- {1+ Rp(xo, W)}2(2m+17j)1</(k0+l)

21 1 . , 1/2
S R 7J Viu(x)Pdx |
Z (\B(XO7R)| B(x0,R)

=0
Then using Lemma 2.4 and (3.20), we arrive at the desired inequality. []
Combining Corollary 3.3 with Lemma 3.5, we have

Lemma 3.6. Let [, m, and n be integers, m>0, 1 <[ <2™, and n >
22" +1)+ 1. Suppose that W € (RH )y, on, and that (=" M+ w2y
=0 in B(xo,R) for some xy€R". Assume also that there exists a positive
constant C such that p(xo, W) < C. Then for any positive integer N there exists
a positive constant Cy such that

Cy
(3.21) sup  Ju(y)| < sup |u(y)|.
yeB(xo, R/2) {1+ Rp(x0, W)} yeBxo.R)

Now we are ready to give
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Proof of Theorem 1.7. Fix xg,yp € R" and put R =|xop— yo|. Then

u(x) = I'm,, .. (X, yo) is a solution of (=" u+ w2 =0 on B(xo, R/2).
We note that there exists a positive constant C such that

3.22 0 ¢

( ) ) = FHz'"+1,2m+1 (x’ y) = ’X _ y|n—2(2m+1) '

(See [10].) Using (3.21) and (3.22), we arrive at the desired inequality. []

Next we prove Theorem 1.8. We arrive at Theorem 1.8 combining the
following Lemma 3.7 with Lemma 3.6.

Lemma 3.7. Let j, I, m, and n be integers, m>0, 1 <[/ <2", n>
22"+ +1,and 1 < j<2(2"+1)— 1. Suppose that W € (RH)yu1,)(20m 11y
and that (—A)*" Mu+ w2""'u=0 in B(xo,R) for some xoe€ R". Assume also
that there exists a positive constant C such that p(xo, W) < C.  Then there exist
positive constants C; and C; such that

. CH{1 + Rp(xo, W)Y G
629 s ) = SRy )
ye€B(xo,R/2) y€B(xo, R)

Proof. Let a and b be nonnegative integers satisfying 1 <a+b <2™ + 1.
We choose 1 € C°(B(xo, R)) such that n =1 on B(x,3R/4) and |V’ (4%y)| <
C/R**>. We use (3.2); by integration by parts, we have

u(y)
nzmwﬂjy+RHngmwwww

2m+1

; w
(3.24)  |Viu(xo)| < CJ ()
B(xo.R) |Xo — Y|
Since W e (RH )yumir,pamisy—pps it follows that W e (RH), for some g >
2mH 1/ {2(2™ + 1) — j}. We choose r such that 2*!'/qg+1/r=1 and r > I.
By Hoélder’s inequality we have

2m+1/q

. 1
(3.25)  |V/u(xo)| < CR" <ﬁj W(y)"dy>
B(xp,R)

1/r
1 J dy
| 7 P YT sup  [u(y)]
(R B(x0, R) Ixo—yl{ 22 HH”) yeB(x, R)

2 J
. u d
BT ) MO

C{1+ R p(xo, W)™ '}
- sup [u(y)].
yeB(xo,R)

+

2m+2

IA
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where we have used Remark 1.4 (2). From (3.25) we have for all ye
B(x0,R/2),
2m+2

c{1 R2(2’"+1) 7%
< { + p(y7 ) } sup |u(x)|

3.26 Viu
(326)  [Viu(y) = L

Using Lemma 2.1 (1) and the fact that p(xy, W) < C we have

M2 kg +2(2"+1)
- C{1 + Rp(xo, W)}*" o
621 swp () < SHRE R sup[ul)|
yeB(xo, R/2) yeB(xo, R)

Then the proof is complete. []

At the end of Section 3, we state a remark on the estimate of the fun-
damental solution. In Corollary 3.2, if we add the assumption R > 1 then we
have

Corollary 3.8. Let j, [, m, and n be integers, m>0, 1 <[ <2", n>
22"+ 10+ 1, and 1 < j<2"+1—1. Suppose that W € (RH )y, om.p, R =1,
and that (—2)*" u+ W* " u=0 in B(xo,R) for some xoeR". Then there
exists a positive constant C such that

12
1 ; 2
3.28 —J VZiu(x)|"dx
(3:28) <|B<xo,R/z>| s )
C 1+R X 7W 2m+2
<A p%f )} sup |u(y)|.
y€B(x0,R)

Using Corollary 3.8 we have an estimate of the fundamental solution under the
assumption |x — y| > 1 instead of p(x, W) < C.

Theorem 3.9. Let [, m, and n be integers, m >0, 1 <[ <2, and n>
22"+ 1)+ 1.  Suppose that W € (RH)zmn/(znr+1)' Then for any positive integer
N there exists a positive constant Cy such that

Cy 1

3.29 0TI < : PR
(329) 0=z {1+ p(x, W)x — y[}Y | — |72

- omy pm+l (x7 y)

where |x — y| > 1.

4. Proof of Theorem 1.5
Theorem 1.5 follows easily from the following lemma.

Lemma 4.1. Let j, I, m, and n be integers, m>0, 1 <] <2 n>
22"+ +1,and 0 < j <2(2"+1)— 1. Suppose that W € (RH )yus1,,)2(2m11)—j}-
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Then there exists a positive constant C such that
(41) ‘p(x7 W)2m+272m+1j/(2m+1)Vj{(_A)znurl + W2m+1 },lf(x)| S CMf(x)’
where f e C(R") and M is the Hardy-Littlewood maximal operator.

Proof. Let r=1/p(x,W). It follows from Theorem 1.7 for j =0 and
from Theorem 1.8 for j > 1 that

2m+2_2m+l- om] . _
(4.2) [p(x, W) W DI f(3)]
S CNp(x’ W)2(2”171)+_j72"1+1,i/(21n+l)

. J plx, W)2C" 070 ()|
R {1+ p(x, W)|x — y[} V] — p" 220

_cey S J LS (»)ldy
= Jaitrc ey <2ir 2= (1 4 7Y x — )N — |
© i—1\2Q2"+0)—j
27) 1 J
<cC : S CrmmY J()ldy
N,‘:Z:oo (1 + 21_1)N (21_1”) |x7y|£2"r| ( )|

© (2,')2(2’”+l)7j

i=—00
Then choosing N >2(2" +1) — j+1 we have
(4.3) Ip(oe, W)X 2T F()] < CMY ().

Then the proof is complete. []

Proof of Theorem 1.5. Let j, [, m, and n be integers, m >0, 1 <[ <2™,
n=22"+0)+1, and 0<j<2Q2"+41)—1. Let ¥V =w>"/"+)  From
Remark 1.2 (3) if Ve (RH), then W e (RH), . We note that We (RH),
implies “W € (RH)ymiyo0msp-;y and there exists a constant C such that
W(x) < Cp(x, W)*”. Using Lemma 4.1 and the fact that the Hardy-
Littlewood maximal operator is bounded on L?(R"), 1 < p < oo, we have

m+l_Hym; m P m m+ly
(44) (w2 (- )P w2y 1f”Ln(R") < CIf N Lormys

where 1 < p < co. Using W = V2" /2™ and letting k = 2™ + I, we arrive
at the desired inequality. []
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