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Let E(k,n; «) be the hypergeometric system of differential equations of type (k, n) defined
on the configuration space X (k, n) of n hyperplanes in general position of the projective space
Pk—1  where « is a system of parameters:

a=(ay,...,qn), a1+ ---+a,=n—k.
The space X (k,n) is an affine set of dimension
m=mn-k—-1)(k-1),

and the rank (the dimension of the linear space of solutions at a generic point) of the system

E(k,n;a) is
_(n—2
r={,_1)

A projective solution ¢ : X (k,n) — P"1 is defined by = +— uy(z) : - -+ : u,(x), where the
u;’s are linearly independent solutions of the system. Note that ¢ is multi-valued.
When k£ = 2, we have
r=m+1;

so the dimension of the source space and that of the target space of the map ¢ agree.
When (k,n) = (3,6), we have
r=m+2 (=6);
so the image of ¢ is a hypersurface of P5.

These exhaust all the cases when the codimension of the image Im(p) of the projective
solution ¢ does not exceed 1.

Consider the following integral
n—1
ua(z) = / TT b5 (e t) ety A A dtys,
A -
J=1

where [;(z,t) are defining equations of the n hyperplanes (I, is the hyperplane at infinity) of
P*=1 representing = € X (k,n), and A is a real (k — 1)-dimensional twisted cycle. If o; ¢ Z,
there are r cycles A, such that the ua,’s are linearly independent solutions.
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Notice that when n = 2k, the most symmetric system of parameters is given by

E)-(t)

When (k,n;a) = (2,4;{1/2}), the following facts are classical: The integrals above are
elliptic integrals, i.e., periods of elliptic curves, the equation describes the family of elliptic
curves (double covers of P! — {4 points}), the image I'm(¢) of the projective solution ¢ is
the upper half plane H C P!, and the map ¢ has a single-valued inverse so that we have the
isomorphism

X(2,4) = H/T(2),

where I'(2) C SL(2,Z) is the principal congruence subgroup of level 2.

When (k,n;a) = (3,6;{1/2}), the following is known ([MSY1]): The integrals above
give periods of K3 surfaces (double covers of P2 — {6 lines}), the equation describes a 4-
dimensional family of such K3 surfaces, the image Im(¢) of the projective solution ¢ lies
in a non-singular quadratic hypersurface @ of P?, indeed it is an open dense subset of the
non-compact dual D C @ of @), and that ¢ has a single-valued inverse map so that we have

the isomorphism
X(3,6) = (D — {fixed points of I'})/I,

where I' is an arithmetic subgroup of the group of automorphisms of D.

Since Q) can be regarded as the Grassmannian variety Gra 4, and since the Grassmannian
Gri—1,m—2 can be equivariantly and minimally embedded in P™~!, we are very happy if
Im(p) might lie in Grg_q -9 C P71

Especially when (k,n; o) = (4, 8;{1/2}), many mathematicians are expecting that Im(¢p)
would lie in Grz g C P?2°~! and that we get a nice isomorphism like the examples above.
Because the system describes a 9-dimensional family of Calabi-Yau 3-folds (double covers of
P3 — {8 planes}), it is a hot topic now. Notice that the integral above gives periods of such
3-folds.

We are very sorry to declare the following

Theorem 1. Ifk 23, n—k 2 3 and (k,n) # (3,6), then the image Im(p) of the projective
solution of the system E(k,n;a) does not lie in Gri_1,,-2 C P! for any Q.

The proof is given by showing that the system E(k,n) is not equivalent to the system of
differential equations defining the Pliicker embedding of Grg 1 n—2. The actual key to prove
inequivalence is the computation of certain Lie algebra cohomology, which due to Se-ashi
reduces the problem to the comparison of the symbols of both systems.

In Sections 1 and 2 we review the equivalence problem of differential systems and prove a
general result on rigidity of differential systems modelled on equivariant projective embed-
ding of the hermitian symmetric spaces (Corollary 3). The comparison of the symbols will
be given in Seection 3. In Section 4 we provide a much simpler proof of inequivalence valid
for E(4,8).

Acknowledgment: When the first and the third authors were preparing the paper [MSY1],

they dreamed about the story of F(4,8;{1/2}) analogous to F(3,6;{1/2}). It was disproved

soon; they were disappointed and had no idea to publish this negative fact. After Professor

Y. Se-ashi’s unexpected death, his notes were completed by the second author, who pointed

out that the conjecture could be disproved generally by following the line of the completed

note. Meanwhile several mathematicians asked the third author whether the image of the
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projective solution of E (4, 8; {1/2}) is in Gr3 ¢, moreover some of them showed him (sketchy)
proofs. So we decided to publish this negative result.

1. Projective embedding of hermitian symmetric spaces

As we explained in [MSY?2], it is classically well known that a system R in m variables
of rank r is nothing but an m-dimensional submanifold M in P"~! ; more precisely, two
such systems are said to be equivalent if one is transformed into the other by a change of
independent variables and by the replacement of the unknown by its product with a non-zero
function and we have the bijective correspondence

{germs of systems in m variables of rank r}/equivalence

+» {germs of m-dimensional submanifolds in P"~1} / PGL(r)

by associating to a system R the image M of its projective solution.

As for the system F(3,6;{1/2}), we checked in [MSY1] that the image of the projective
solution lies in a non-singular quadratic hypersurface () by utilizing the projective hyper-
surface theory in P5.

Our concern in this paper is the Grassmannian variety Grg_1,—2 in P'~! embedded
as the image of the Pliicker embedding, on the lower side of the above correspondence.
Hence, in this section, we would like to construct group-theoretically a system R(k,n) in m
variables of rank r, which corresponds to Gry_1,—2 in P™—! in the above diagram, where
m=(n—k—1)(k—1) and r = (Z:f), and we discuss the inequivalence of E(k,n) and
R(k,n) in §3 by virtue of Se-ashi’s theory for the equivalence of integrable linear differential
equations of finite type.

For this purpose and also as a motivation to introduce Se-ashi’s theory in §2, which in fact
enables us to construct R(k,n) a little generally, we will consider here projective embedding
of hermitian symmetric spaces.

Group-theoretically, a compact irreducible hermitian symmetric space M corresponds to
a simple graded Lie algebra of the first kind as follows: Let [ = [_; & [p & [ be a simple
graded Lie algebra of the first kind, i.e.,

(i) I'is a simple Lie algebra over C.
(ii) I=1_1 ® lp ® I; is a vector space direct sum such that [_; # {0}.
(iii) [lp, lq] C lp4q, where [, = {0} for |p| = 2.

Let L be the simply connected Lie group with Lie algebra [ and L’ be the analytic subgroup
of L with Lie algebra I' = l[p @ ;. Then M = L/L’ is a compact (irreducible) hermitian
symmetric space and every compact irreducible hermitian symmetric space is obtained in
this manner from a simple graded Lie algebra of the first kind. M is called the model space
associated with [ = [_; @y ®;. For example, when M = Gry_1 ,—2, we have [ = sl(n—2,C)
and the gradation [=1_1 & [y @ I; is given by subdividing matrices as follows:

(1.1) 1_1:{<g 8) \CeM(p,z')}, [1:{<8 10)> |D€M(i,p)},

lh = { (61 g) | Ae M(i,i), Be€ M(p,p) andtrA—l—trB:O}.
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where i =k —1,p=n—k — 1 and M (a,b) denotes the set of a x b matrices.

An equivariant projective embedding of the model space M = L/L' can be obtained
from an irreducible representation of L as follows: Let 7 : L — GL(T) be an irreducible
representation of L with the highest weight A. Let t5, be a maximal vector in 7" of the highest
weight A. Then a stabilizer of the line [t5] spanned by vy in T is a parabolic subgroup of
L. When this stabilizer coincides with L', we obtain an equivariant projective embedding of
M = L/L' by taking the L-orbit passing through [tA] in the projective space P(T') consisting
of all lines in T' passing through the origin. For example, when M = Grj_1 -2, wWe take
the exterior representation 79 of L = SL(n —2,C) on T = /\k_1 cr—2.

70 : SL(n — 2,C) — GL(AF1C"2),

where To(a)(vy A -+ Avg_1) = a(vy) A--- Aa(vg_1) for a € SL(n — 2,C) and v; € C*~2
(i=1,2,...,n—1). Let {eq, ..., en_2} be the natural basis of C*~2. Then 7y is an irreducible
representation of SL(n — 2,C) with the maximal vector e; A--- Aeg_1 for a suitable choice
of a Cartan subalgebra and a simple root system of sl(n — 2,C). From (1.1), we see that
the stabilizer of the line [e; A --- A egx—1] coincides with L'. Thus we see that the Pliicker
embedding of Gri_1 ,—2 is obtained from the irreducible representation 7y of SL(n — 2, C).

Next, for an irreducible representation 7 : L — GL(T'), we will construct a (positive) line
bundle F' over M such that the above orbit is obtained as an embedding of M by global
sections of F'. To construct F, let us take the dual representation p : L — GL(S) of 7, i.e.,
S = T* is the dual space of T and p = 7* is defined by

(p(9)(€),1) = (& (g~ 1)),

for g € L,t € T, € T* and (, ) is the canonical pairing between T™* and T. Then, when
7 is an irreducible representation with the highest weight A (for a fixed choice of a Cartan
subalgebra and a simple root system of [ '), p is the irreducible representation with the lowest
weight —A. Let us take a basis {{1,...,t.} of T consisting of weight vectors of 7 such that
t1 = ta. Then the dual basis { s1,...,s,} of {#1,...,t,} in S = T™* consists of weight vectors
of p and s; is a weight vector corresponding to —A. Let W and W' be the subspaces of S
spanned by a vector s; and by vectors s, ..., s,, respectively. Since L' is the stabilizer of
the line [t1], W' is preserved by L’. Hence we get the representation py of L':

pw : L' - GL(W),

through the projection 7o : S=W e W' - W.
Relative to the representation py,, L’ acts on L x W on the right by

(9,w)g' = (99", pw (¢') "  (w)),

forge Lywe W and ¢’ € L'. Then F = L x W/L' is the line bundle over M = L/L’.
As is well known, the space I'(F') of global sections of F' is identified with the space
F(L,W)r of all W-valued functions f on L satisfying

f9g") = pw (9 )~ f(9),
for g € L and ¢’ € L', via the correspondence f € F(L, W) — o5 € I'(F) given by

op(mi(g)) = m2(g, f(9)),
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where my : L - M = L/L' and 73 : L x W — F denote the natural projections. Then each
s € S defines an element o € T'(F) via the above correspondence by

fs(9) = mo(p(g™")s)

for g € L.

Now let us check that global sections of F' give the desired embedding of M into P(T).
We utilize the above basis {¢1,...,t.} and {s1,...,s.} of T and S = T*. Let us consider a
map ¢ of L into T defined by

T

(1.2) ¢(g) =Y (fs.(9), t1)ti

=1

for g € L. Then, from (fs,(g),t1) = (p(g7")ss,t1), ¢ induces a map ¢ of M into P(T)
satisfying the commutative diagram

A LV 1}}

l l

M=L/L' —£— P(T).

For g € L, if we represent 7(g) as a matrix A with respect to the basis {#1,...,%.}, p(g™?1)
is represented by the transposed matrix A of A with respect to the basis { s1, ..., s,.}.From
(1.2), ¢(g) corresponds to the first row vector of *A. Hence we obtain

¢(9) = 7(9)(t0)-
Thus the image of ¢ coincides with the L-orbit passing through [¢1] in P(T).

Owing to Se-ashi’s theory, which will be discussed in the next section, we can construct
a system R, of linear differential equations of rank 7 on F' such that every local solution
of R, is a restriction of o, for some s € S as in the following: Let J?(F) be the bundle of
p-jets of F'. The fiber JE(F) of JP(F) over a point = of M is the quotient of the space of
germs of sections of F' at x by the subspace of germs which vanish to order p + 1 at z. Let
nh : JP(F) — J9(F) denote the natural projection for p > ¢q. At each point x € M = L/L’,
let (Rf); be the subspace of JZ(F') defined by

(Rp)e = {Jz(0s) | s € S},

where j2 (o) is the p-jet at = of the section o,. Let R be the subbundle of JP(F') defined
by
Ry = | ().
TEM

Then there exists a natural number py such that Wg_l induces a bundle isomorphism of Ry
onto Ry_, for every p 2 po (for more detail, see §2.2). Putting R” = Rf , we see that R’
has the desired property. In fact, R” is the model equation for the typical symbol of type
(I, p) in Se-ashi’s theory (see Proposition in §2.3).

We denote by R(k,n) the system constructed as above from the exterior representation pg
of L=SL(n—2,C)on S = /\"_k_1 C"2, which is dual to the representation 79. Then, from
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the construction, the projective solution of R(k,n) coincides with the Pliicker embedding
of M = Grg_1,n—2. Thus we obtain the system in m variables of rank 7 corresponding to
Gri—1,m—2 in P"71 in the bijective correspondence given at the beginning of this section.
We shall examine the symbol of R(k,n) in detail and discuss the inequivalence of E(k,n)
and R(k,n) in §3.

2. Se-ashi’s Theorem

Se-ashi’s theory on the equivalence of integrable linear differential equations of finite type
deals with the special classes of equations characterized by their symbols, namely, with those
equations having the typical symbol of type ([, p), where p is an irreducible representation
of a (semi-)simple graded Lie algebra [ of the first kind. We will briefly review his theory
and also prove a theorem on the Lie algebra cohomology, which was left unpublished in his
note. We will confine ourselves in the holomorphic category and take [ to be a simple Lie
algebra over C in the following argument, although his theory applies also in the real C*°
category and for semi-simple Lie algebras over R.

2.1. Linear differential equations of finite type. Let us begin with recalling some
generalities on jet bundles. Let M be a manifold of dimension m. We denote by 7" and T*
the tangent and the cotangent bundle of M respectively. For a vector bundle E over M,
we denote by JP(E) the bundle of p-jets of E. The fibre of JP(E) over a point z of M is
the quotient of the space of germs of sections of E at x by the subspace of germs which
vanish to order p+ 1 at . We identify J°(E) with E and put J~'(E) = M for convention.
Let 72 denote the natural projection of JP(E) onto J(E) for p > q. For a section s of
E, its p-th jet at z is denoted by jP(s). There exist the natural vector bundle morphism
gp 1 SPT* @ E — JP(E) and the exact sequence

p

0 — SPT* @ E =2 JP(E) 2= JP~Y(E) — 0,

where SPT* denotes the p-th symmetric product of T*.

A subbundle R of J?(F) is called a system of (homogeneous) linear differential equations
of order p on E. A solution of R is a (local) section s of E satisfying j2(s) € R, at
each x € M. Let R, = wP(R) be the image of the projection of R into J"(F) and put
gr = RN (S"T* ® E) for r < p, which is called the r-th symbol of R. We have an exact
sequence

0—gr R, "3 Ry — 0.

The direct sum S, = @"_,(gr)s is called the (total) symbol of R at € M, where (g;), C
S"Ty ® E, denotes the fibre of g, over z.

A system R of order p is said to be of finite type if g, = 0, i.e., if 7'['5_1 :R— R, ;isan
isomorphism. A system R of finite type is said to be integrable if, for each n € R, there is a
(local) solution s for which j2(s) = 5, where = 7” (). In this case, such a solution s is
uniquely determined by the initial condition n € R,. Thus, by a continuation of solutions
along a curve z;,t € [0,1] on M, we get a parallel displacement 7 : R, — R,,. Namely, for
each 19 € Ry,, we take a local solution s of R such that j2 (s) = 1o, continue this solution
along z; and put 7(n9) = m = j% (s) € R;,. In this manner, we obtain a connection V in
the vector bundle R over M. Since the above parallel displacement is independent of curves
joining xy and z; in a neighborhood of z(, V is a flat connection. In fact, V is induced from
the Spencer operator acting on J?(E) (Proposition 1.5.1 [S]).
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Let E and E’ be vector bundles over M. Let R and R’ be systems of order p on E and
E’, respectively. Then a bundle isomorphism ¢ : E — E’ is called an isomorphism of R
onto R' if JP(¢) maps R onto R, where JP(¢) : JP(E) — JP(E') is the lift of ¢. In this
case we denote by RP(¢) the restriction of JP(¢) to R. Obviously, RP(¢) is a vector bundle
isomorphism of R onto R’, which preserves the flat connections in R and R'.

2.2. Typical symbol of type (I,p). Let R be a system of linear differential equations
of order p on F and let g, be the r-th symbol of R forr = 0, ..., p. We fix vector spaces V' and
W over C such that dim V = dim M and dim W = rankF, respectively. Let S = @1::0 Sy
be a graded vector subspace of @%_, S"V* ® W. Then the system R is said to be of type
S if, for each © € M, there exist linear isomorphisms z7 : V 2 T, and zg : W 2 E, such
that the induced isomorphism (‘27') ® zg : STV* @ W = S"T* ® E, sends S, onto (g,)s
for every r. In this case, S is called the typical symbol of R.

Now we introduce the important classes of typical symbols for integrable systems of linear
differential equations of finite type in the following.

Let [ = [_1®lp®[; be a simple graded Lie algebra over C of the first kind and p : [ — gl(5)
an irreducible representation of [ on a vector space S.

As is well-known, there exists a unique element Z € [ (Lemma 4.1.1. [S]) such that

L={Xel|l[Z,X]|=pX} (p=-1,0,1).

Z is called the characteristic element of [ = [_; @ lp @ [;. Since ad(Z) is a semi-simple
endomorphism with eigenvalues —1, 0 and 1, p(Z) is a semi-simple endomorphism of S
(Corollary 6.4 [Hu|) with real eigenvalues (see the arguments in §2.5). Moreover, putting
Sy ={s€S|p(Z)(s) = ps}, we have

p([p)S(H) C S(H-HJ) for p=-1,0,1.

Let Ao be the minimum eigenvalue of p(Z) and put S, = S(x,4r) for 7 2 0. Then, since p is
irreducible, there exists a natural number py (Proposition 4.2.1 [S]) such that S, # {0} for
r=20,1,...,p0 — 1 and

For each integer ¢ (0 < ¢ < po) put Sq(q) ={s€ Sq | p([=1)(s) =0}. Then Sy(0) = Sp and
Sq(g) is a p(lp)-invariant subspace of S;. We define a linear subspace S(q) = @D ,<, <p, Sr(¢)
of S inductively by -

Sr+1(q) = p(11)(Sr(9)) C Spy1-

One can easily check that S, (q) is p(lp)-invariant and p(I_1)(Sy+1(q)) C Sy(¢) by induction
on r 2 ¢. Thus S(q) is a p(I)-submodule of S. Since p is irreducible, we get S(0) = S and
S(q) = 0 for ¢ > 0. Hence, putting S, = {0} for r = py, we obtain

(2.1) So={seS[p(l-1)(s) =0},
and

(2.2) Sr+1 = p(l)(Sr) for r=0.
7



Now we put V = [_; and W = S§,. Then we have a linear isomorphism ¢, of S, into
STV*QW (r=1,...,po — 1) defined by

2 (8)(X1s o, X) = (~1)7(X0) - p(X,) (s).
Since [_; is abelian, ¢, is well-defined. In this manner, S = €, >, S, is regarded as a graded

vector subspace of @, >, S"V* ® W, which is called the typical symbol of type (I, p).

As an example, we construct the typical symbol of type (I, p), when [ = sl(n — 2,C)
is endowed with the gradation given in (1.1) and p = py is the exterior representation on
S — /\’n—k—l(cn—2:

p:sl(n—2,C) — gl(A"F-1Cn—2),

where
p(X)(v1 A Avp__1) = Z VIA - AXW)AN - ANUp__1
for X € sl(n —2,C) and v; e C"2 (i=1,2,...,n—k—1).
Let {e1,...,e,_2} be the natural basis of C*~2. Then I' = [o®l; is the isotropy (stabilizer)
algebra of the line [e; A -++ A eg_1] in AF7IC"~2. We denote by Eq € gl(n —2,C) (1 <

a,b < n — 2) the matrix whose (a, b)-component is 1 and all of whose other components are
0. From (1.1), we have the following basis for V = [_; and I;:

V=Il1=(Ep|1Sisk-1,k<p<n-2)
h=(Fip | 1Si<k—1,k<pSn—2)
Since Ep;(ej) = d;5ep for 1 < j <k —1 and, Epi(eq) = 0 for k < ¢ < n — 2, we have from

(2.1)
W ==S8y=(ex N---Nen_2).

For1<ii<---<i4,.Sk—land k<p; <---<pr <n-—2, weput
e(P1y--sDr) =€k A AEp, Ao+ A&y, A--+Aep_g € NVFTTICH2,
and consider the following element of S:
$(i1y- -y lp, D1yee D) = €5 A= Nei Ae(pr,...,pp) €S =A"FTIC2,
Then, from (2.2) and E;p(e;) =0, Eijp(eq) =0dpgei for 1 S j<k—1,k < qg<n—2, we get

Sy =(s(i1,- -y ipyP1,--s0r) |1 S01 < <0 Sk—1,kSp1 <---<p Sn—2),

forr=1,2,...,p0 — 1 and
S, = {0},

for r 2 pg = min{k,n — k}. Moreover, for X = Zip XipEy € V, we have

br(S(ity e yiry D1y ey 0e)) (X, X) =7 (=1)" X (e, ) A -+ A X(e,) Ne(p1y. -y Dr)
= r!(—l)r(z sen 0 Xiyp, 1y Xippomy) €pr A= Aep, Ae(pr,- -, Dr).
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Thus, by fixing a basis of W and identifying SV* with the ring of polynomials on V, we
see that S; = V* and S, C S"V* is spanned by the minor determinants of degree r of the
matrix (X;p), which are the linear coordinates of V.

2.3. Model systems. Starting from the typical symbol S = @>_, S, c B’_,S"V*®
W with the properties So = W and S, = 0, we now explain a recipe to construct an
integrable system of differential equations of finite type of order p modeled after S.

The construction of the model system Rg is preceded by the consideration of the Lie
algebra g of infinitesimal automorphisms of the constant coefficient differential equations
modeled after S.

Let Ey = V x W be the trivial bundle over the vector space V. Then the fibre J§(Ey)
of JP(Ey) at the origin 0 € V is identified with F_, S"V* @ W, where S"V* @ W can be
regarded as the set of W-valued homogeneous polynomials of degree r» on V. Thus, starting
from the typical symbol S = @Y_, S, € @F_,S"V* @ W, our first (local) model is the
constant coefficient differential equations given as the subbundle Rs =V xS of JP (Eo),
whose solutions consist of W-valued polynomials contained in S C SV*® W.

Let us consider an infinitesimal bundle automorphism of E preserving Rs. An infinites-
imal bundle automorphism of Ej has a form

. 0 0
} : i § : B
- & (‘T) axz + o Aazﬁ(m)y 8ya ’

where (z%) and (y®) are linear coordinates of V and W, respectively. Thus the Lie algebra
a of (formal) infinitesimal bundle automorphisms of Ey can be expressed as a graded Lie
algebra a = @, > _; a, by putting

a,=S"TV*@V e STV ®gl(W),

where a_; = V corresponds to constant coefficient vector fields on V. The bracket operation
in a is given by

[fRv,g@w]=—f(i(v)g) ®w+ g(i(w) f) ® v,
[f®A g@w]=g(i(w)f)® A,
[f®A g®B]=fg®|[A B,
where f,g € SV*, v,w € V and A, B € gl(W) ; i(v) denotes the inner multiplication. The

Lie algebra a acts naturally on the space SV* @ W that is regarded as the space of cross
sections of Ejy:

(fov+g9g®A)(h®@w)=—f(i(v)h) ®w+ gh® A(w),

where f,g,h € SV*, v,w €V and A € gl(W).
Then the Lie algebra g of infinitesimal automorphisms of Rg is given by

g={Xea|X(S)CS}

g is a graded subalgebra of a = ,>_; a,, i.e., g = @,>_; gr, where g, = gna,. The Lie
algebra gl(S) has also the gradation given by

gl(S)r ={ X € gl(S) | X(S1) C Si4r for any [ }.
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Referring the action above we have a restriction homomorphism: g — gl(S), which sends
g into gl(S),. Assume here the following two conditions for S, which are satisfied by the
typical symbol of type (I, p):

(A1) The action of a_; =V leave S invariant.
(A2) The action of a_; =V on S is faithful.

Then this homomorphism turns out to be injective and we can characterize g, as a subspace
of gl(S), as follows:

g-1= V7

2.3
(2:3) gr={Xegl(S)|[g_1,X]Cgr_1} for r=0.

Put u, = S"V* @ gl(W) C a,. Then u= &,>,u, is an ideal of a and n = uN g is an ideal
of g. We can see -

(2.4) n, ={X €gl(S),|[g-1,X]Cnp_1} for =0,

where we put n_; = {0} for convention.

In the case of the typical symbol of type (I, p), we have the following : We identify [
with its image p(l) in gl(S) as follows. Let ¢ denote the centralizer of [ in gl(S) and g+
the orthogonal complement of g in gl(S) with respect to the non-degenerate bilinear form
Tr given by Tr(X,Y) = trace XY for X,Y € gl(S). Then, from (2.3) and (2.4), we have
(Proposition 4.4.1 [S])

(2.5) g=I[dc, n=c, gl(S)=1®n®g" (Tr-orthogonal).

In fact, since p is irreducible, ¢ coincides with the center of gl(S) in our case.

Now let S = @?_, S, be a typical symbol satisfying So = W, S, = 0, and the above
conditions (A.1) and (A.2). Then the model system Rg is constructed as follows: We filtrate
the space S by subspaces S” = @7_ S;. Notice that the group GL(V)x GL(W) acts on a by
the adjoint action: for a € GL(V)xGL(W) and X € a, the action is (aX)(s) = (a-X-a~1)(s)
for s € S. Let us define groups

Go={aeGL(V) x GL(W) | a(S) Cc S},
GLO(S)={ge GL(S) | g(S") Cc S for anyr}.

Let G be the analytic subgroup of GL(S) with Lie algebra g € gl(S) and put

G=G- Gy,
G' = GNGLO(S).

We see that the groups Gy and G’ are Lie subgroups of GL(S) with Lie algebras go and
g = @D, > 9- respectively. Since G’ preserves the filtration {S"},>o of S, we get the

representation py of G':
pw : G' = GL(W),

through the projection 7o : S = @F_, S, — So = W.
10



Let Eg be the vector bundle over M = G/G’ associated with the representation py :
G' — GL(W) ; G' acts on G x W on the right by

(9,w)g' = (99", pw (g') " (w)),

for g € G,w € W and ¢’ € G'. Then Eg is the vector bundle over M = G/G’ defined by
Es =G x W/G'. As in §1, each s € S defines an element o5 € I'(FEg) by considering the
equivalence class of (g, pw(g71)(s)) € G x W.

At each point z € M = G/G" , let (Rg), be the subspace of JP(Eg) defined by

(Rs)e = {Jz(0s) | s € 5}

Let Rg be the subbundle of JP(Eg) defined by

Rs = ] (Rs)a-

zEM

Then we have

Proposition. (Proposition 2.4.1 [S].) Rg is an integrable system of linear differential equa-
tions of finite type of order p of type S and every local solution of Rg is a restriction of o
for some s € §.

We call Rg the system of equations modeled after S. In the case when S is the typical
symbol of type (I, p), it follows from (2.5) that G/G' = L/L’'. Moreover, when p is the
irreducible representation of | given in §1, we see that RP coincides with the system of
equations modeled after S.

2.4. Normal Reduction. Let R be an integrable system of linear differential equations
of finite type of order p of type S on E. Then R is a vector bundle over the base manifold
M with typical fibre S. A frame z of R at £ € M is a linear isomorphism of S onto R,. Let
F(R) be the frame bundle of R:

F(R)= | Fu(R),

zeEM

where F,(R) denotes the set of all frames of R at x € M. F(R) is a principal GL(S)-bundle
over M. The flat connection V in R induces the connection and the connection form @ on
F(R) is a gl(S)-valued 1-form. Se-ashi’s theorem (Theorem A below) asserts the existence
of a good reduction of the pair (F(R),w) for a system R with the typical symbol of type
(I, p). This reduction is carried out in several steps.

First, let {S"},>o be the filtration of S. The associated graded vector space gr(S) =
@D, S"/S™*! can be naturally identified with S = @, >, S,. Let GL()(S) denote the sub-
group of GL(S) consisting of all elements a € GL(S) which preserve the filtration {S"},>,

of S. For a € GL((S), we denote by gr(a) € GL(S) the induced automorphism of the
graded vector space S = @F_, S,. Define

GO = {aec GLO(S) | gr(a) € Gy }.
11



The Lie algebra of G is given by g(® = go & @P_; g{(S),. Then we have the natural
reduction of the structure group GL(S) of F(R) to G as follows : At each z € M, R, has
a filtration {R}},>, given by

Rr =Ker (7P_, : Ry — JI7Y(E))

Put
P,(R) ={z € Fy(R) | 2(S") C R, for any r}.

Obviously, P(R) = | seM P,(R) is a principal
G L) (S)-subbundle of F(R). Since g, = R, N (S*T*® E) denotes the r-th symbol of R,
each frame z € P,(R) induces a graded map gr(z) : S, — (g,).. We put

P,(R) = {z € P,(R) | gr(z) is the extension of isomorphisms V 2 T, and W & E,, }.

Then P(R) = (U, Po(R) is a principal G(®-subbundle of F(R). Let = : P(R) — M be
the bundle projection and let w be the restriction to P(R) of the connection form @ on
F(R). According to the decomposition gl(S) = @T__pﬂ gl(S),, the form w is decomposed

as
w= E Wy--
T

It has the following properties (Proposition 3.2.2 [S]):

1
(1) dw+§w/\w:0,

(26) ¢ (2) Wy = 0 forr é —2,
(3) w-_1 is a g_1-valued basic form, that is,

w_1 gives the isomorphism T,(P(R))/Ker m = g_; at each z € P(R).

The pair (P(R),w) characterizes the equivalence class of the system R (Proposition 3.3.1
[S]). Namely, let R and R’ be integrable systems of type S. Then an isomorphism ¢ of R onto
R’ induces the bundle isomorphism P(¢) : (P(R),w) — (P(R'),w’), i.e., P(¢) is a bundle
isomorphism of P(R) onto P(R’) satisfying P(¢)*w’ = w. Conversely, for any isomorphism
U : (P(R),w) = (P(R),w'), there exists a unique isomorphism ¢ of R onto R’ such that
v = P(9).

Second, in order to state the normality condition for G’-reduction of P(R), we prepare
the Spencer cohomology associated with the adjoint representation of [_; on gl(5).
On the space C = @ CP+7 of cochains

O = NI(I_1)* @ gl(S)p_1,

we define the coboundary operator 9 : CP4 — CP~1:4+1 by

dc(Xo, ..., X,) = Z(—1)J‘[p(Xj), (Xoy s Xjyo ooy X))
12



The cohomology group H4(I-1, gl(S)) = D, H?(I-1, gl(S)) of this cochain complex (C, 9)
is called the Spencer cohomology group associated with the adjoint representation of [_; on
gl(S). Moreover, the adjoint operator 9* : CP~1:4+1 — CP:4 is given by

o c(Xy,..., X Z[p (EY), c(Ei, X1, - - -, X)),

where {F;} is a basis of [_; and {E*} is the dual basis of I; relative to the Killing form B.
Let 7 be the complex conjugation relative to a compact real form of [ such that 7(I;) = [_;
and 7(lp) = lp. We have a (hermitian) inner product given by {X,Y} = —B(X,7(Y)).
Moreover, since [ is simple, we can find an inner product {,) on S such that (p(X)(s), s’) +
(s,p(7(X))(s")) = 0 for s,s" € S and X € [. Then we define the inner product (,) on
gl(S) by (u,v) =trace (uv*), where u,v € gl(S) and v* is the adjoint of v relative to (,).
These inner products induce naturally an inner product on C?P'9. Then, relative to this inner
product, 0* is seen to be the adjoint of 0. Thus we can develop a harmonic theory for (C, 9),
using the laplacian A = 00* 4+ 0*0. In fact, we will apply the harmonic theory of Kostant to
compute HP1(I_1,gt) in §2.5. We denote by #H the harmonic projection. For I-submodule
g+ of gl(S), we put C(gt) = A(I_1)* ® gt. Then (C(gt), d) is a subcomplex of (C, 9).

Let (Q(R),x) be a G'-reduction of (P(R),w); i.e., Q(R) is a G'-principal subbundle of
P(R) and Y is the restriction of w to Q(R). According to the decomposition gl(S) = g® g=,
the form y is decomposed as

X = Xg T Xgt-
Since Tr is Ad(G')-invariant, we have R} xg = Ad(a™') x4 and R} x,: = Ad(a 1) Xgt+ for
any a € G'. For X € ¢/, xy0(X*) = 0 since x(X*) = X. From (2) and (3) of (2.6), w
have (x41)p = 0 for p < —1. Moreover, x4 gives an isomorphism between T, (Q(R)) and g
at each point u € Q(R). Namely, we have (Proposition 5.1.1 [S]) the following.

(1) (Q(R),xq) is a Cartan connection of type G/G’ over M.
(2) xg- is a tensorial 1-form on Q(R).

We now define a C*(g)(= Hom(I_1, g*))-valued function ¢ on Q(R) by

c(u)(X) = xq+ (X3) foru e Q(R), X € [_;.

u

c is called the structure function on Q(R). For each p, cP denotes the CP>!(g!)-component
of ¢, i.e., cP(u)(X) = (xgr)p-1(X;). Then

(2.7) =0 for p=0.

We note here that, if ¢ vanishes identically, we have x = x4 and, from (1) of (2.6), (Q(R), x)
is a flat Cartan connection of type G/G’.

A G'-reduction (Q(R), x) is said to be normal if the function c is 0*-closed. Now we can
state Se-ashi’s Theorem (Theorem 5.1.2, Theorem 5.2.2 [S]) as follows.

Theorem A. (1) For every integrable system R of differential equations of type (1, p),
there exists a unique normal reduction (Q(R), x) of (P(R),w).
(2) Let R and R’ be integrable systems of type (I, p). Then an isomorphism ¢ of R
onto R’ induces the isomorphism Q(¢) : (Q(R),x) — (Q(R'),X), i.e., Q(¢) is a bundle
13



isomorphism of Q(R) onto Q(R') satisfying Q(¢)*x' = x. Conversely, for an isomorphism
U: (Q(R),x) = (Q(R), X", there erists a unique isomorphism ¢ of R onto R' such that
U =Q(¢).

(3)  If the structure function c vanishes identically, then R is locally isomorphic with
the model system of type (I, p). Furthermore, the harmonic part He of ¢ gives a fundamental
system of invariants of R, i.e., ¢ vanishes if and only if Hc vanishes.

2.5. Vanishing theorem on H!(I_;,gt). Let us recall some facts on simple graded
Lie algebras [ = [_; & [y & [; of the first kind, following [Y], which are necessary in the
subsequent discussion.

Let Z be the characteristic element of [ = [ & [y @ [;. Since ad(Z) is a semi-simple
endomorphism of [, we can take a Cartan subalgebra t of [ containing Z. Let ® be the set
of roots of [ relative to t. Then we have the root space decomposition of [:

(=te P L,

acd

where [, = {X € | | [H,X] = a(H)X forall H € t} is the root space for « € ®. We
have by definition a(Z) = —1,0 or 1 for any o € ®. Let us choose a simple root system
A ={ai,...,oq} of ® such that a(Z) 2 0 for all @ € A. Then there exists a unique simple
root «;, € A such that o, (Z) =1, a;(Z) = 0 for i # iy and the gradation is given by

(2.8) h=to @ (la®_a),

aeég

Li= P la h= P l

aeéf aE@f

where ®f = {a € ®% | a(Z) = p} and ®* is the set of positive roots. Because of the
partition @ = &1 U &, we see that n;,(§) = 1 for the highest root § = 22:1 ni(0)a; and
that

!
(2.9) df ={a= Zni(a)ai € ®" | n;(a) =p} for p=0,1.

=1

Conversely, let [ be a simple Lie algebra over C. Let us fix a Cartan subalgebra t of [ and
a simple root system A = { a1,...,} of . Choose a simple root «;, such that n; () =1
for the highest root 6§ = Z§=1 ni(0)a;, and define the partition ®+ = & U ®] by (2.9).
Then we can construct the gradation of [ of the first kind by (2.8), i.e., by defining the
characteristic element Z € t by

A
(2.10) ai<z>={ i i=do,
0 if 7 #1p.

We denote the simple graded Lie algebra [ = [_; @& [y @ [; obtained in this manner by

(X1, {ci,}), when [is a simple Lie algebra of type X;. Here X; stands for the Dynkin diagram

of [ representing A and o, is a vertex of X; with the coefficient 1 for the highest root. It

is known [Y, §3] that simple graded Lie algebras of the first kind are completely classified
14



by the diagram automorphism of (X, {a;,}). For example, the gradation of [ = sl(n — 2, C)
given in (1.1) corresponds to (A, _3,{ax_1}). We refer the reader to [Y, §4.4] for the detail.

Let 7 : [ — gl(T) be an irreducible representation with the highest weight A. Let ¢t be
a maximal vector in 7' of the highest weight A. Then an isotropy algebra at [tx] € P(T)
coincides with ' = [p @ [y if and only if (A, a;,) # 0 and (A, ;) = 0 for simple roots «; other
than «;,, where (,) denotes the inner product in (tg)*.
Let p: [ — gl(S) be the dual representation of 7 ; i.e., S = T™* is the dual space of T" and
p = 7% is defined by
(p(X)(&), 1) + (& 7(X)(t)) =0,

for X e [t € T,{ € T* and (, ) is the canonical pairing between T* and T. Then p is an
irreducible representation with the lowest weight I' = —A. Hence the minimum eigenvalue
Ao of p(Z) is given by Ag = I'(Z). From (2.10), we see that the eigenvalues of p(Z) are of
the form ; Ag, Ao+ 1,..., A0 +po— 1 = K(Z), where A is the highest weight of p. When
I = lo @1 is the isotropy algebra at [t5], the Agp-eigenspace of p(Z) coincides with the weight
space for T, i.e., Sy = (s1) in the notation of §1.

Given an irreducible representation p : [ — gl(S) on S, consider the adjoint representation
adop: [ — gl(gl(S)) on gl(S). Then, from [p(Z),Y](s) = p(Z2)Y (s) —rY(s) for s € S, we
have

Y(S;) C Si4r forallr if and only if [p(Z),Y]=1Y.

Thus p(Z) € gl(S) is the characteristic element of the gradation of gl(S) = @p,. gl(S),.

To state the theorem of Kostant, we prepare the notation for the Weyl group W of the
root system ®. For an element ¢ € W, we put &~ = —®* and &, = ¢(®~) N &*. Then
0(6) =6—(P,), where § = 3 >~ .+ @ and (®,) denotes the sum of all elements in ®,. For
a fixed (Xj, {a;,}), we define the subset W of W by putting

Wl={oceW|®, C®f}.
Moreover, we put
W(g) ={o €W |n(o) =g} and W°(q) =W°nW(q),
where n(o) is the number of roots in ®,. For an element o € W%(q), we put ze, =
Tg, N---ANzg, where @, = {f1,...,8,} C o and xg, is a root vector for the root 3; € .

The theorem due to Kostant that we utilize is the following.

Theorem B. (Proposition 10.1 [MM]|, Theorem (Kostant) [Y, §5.1].) Let [=1[_1 ® D
be a simple graded Lie algebra over C represented by (X;, {ci,}) as above. Let 7 : [ — gl(T)
be an irreducible representation of [ on T with the lowest weight T'.

Then the harmonic space HY of the cochain compler C? = TQAI(I_1)* can be decomposed
into the irreducible lg-module as follows:

H= P H-,

oeW(q)

where HE is the irreducible lo-module with the lowest weight £, = o(I' = 6) +6 = o(T') +
(®,) generated by the lowest weight vector

ta(I‘) X o, ,
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where t,ry is a weight vector in T with weight o(T') and e, = x5, N--- Nzg, € Ny =
N(1Zq1)*.

We apply this theorem to our case when ¢ = 1. In this case we have W°(1) = {0y, },
where 0;, = 04, Is the reflection corresponding to the simple root ;,. Hence H! is an
irreducible lp-module with the lowest weight &, = 04, (I) + v, -

Now we show the following vanishing theorem for HP:1(I_;, g1).

Theorem 2. Let[=1_1® oy be a simple graded Lie algebra over C and let M = L/L’
be the model space associated with | = [_1 ® lo ® l1. Let p : | — gl(S) be an irreducible
representation on S and H'(I_1,g") be the first Lie algebra cohomology associated with the
adjoint representation of I_1 on gt induced from ado p : [_y — gl(gl(S)), where gl(S) =
gDg.

Then, for each p: [ — gl(S),

HPY Iy, g7) = {0} forallp>1,

except when M is a projective space P™ or a hyperquadric Q™.

Proof. The adjoint representation adop : [ — gl(gl(5)) on gl(S) is decomposable according
to the decomposition

gl(S) =g g,

and the gradation gl(S) = &,gl(S), coincides with the eigenspace decomposition of adop(Z).
To utilize Theorem B, we further decompose g into direct sum of irreducible -modules

GJ_ = @ mFTFa

where Tt is an irreducible [-submodule with the lowest weight I'. Then we have
Hl([_l, gJ') = @ mpﬂl([_l, T[‘).

By Theorem B, the harmonic space H{ representing H'([_1,TT) is an irreducible lp-module
in Tt ® [; generated by
ta,vo () 029 xaio ;

where {5, (r) is the weight vector with weight o, (I') and z,,  is a root vector for o, € .
Thus HE: C CP1(gt), if to;, (r) € 8I(S)p—1. Hence p is given by

p—1=0;,(I)(Z).

Let us compute the integer o, (I')(Z). For each o € t*, we denote by ¢, and h, the
elements of t defined by

B(ta,h) =a(h) forhet and  hy= ,

where (o, @) = B(tq,ts) and B is the Killing form of [. Moreover, we put

<.u’a a> = Q(ZL,(;) = .u(ha) for p € t*.
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Thus, for the simple root system {ai,..., o} of @, {hq,, ..., hq,} forms a basis of t. With
respect to this basis, we put
!
Z = Z aihai .
=1

Then we compute
i, (1) (Z2) = = (T, aip)e,)(Z) = T(Z) — (T, iy )
(2.11) =(ai, — (T, i) + > ai(T, ;)

iio

Since I is the lowest weight, we have (I', ;) <0 for ¢ =1,...,l and (I', ;) < 0 for some j.
Let us now check the sign of (a;, — 1) and a;. From (2.10), we have

l . . .
1 if 2 =1g,

=1

Hence, we see that (a1, ..., q;) coincides with the ip-th column vector of the inverse matrix
C~! of the Cartan matrix C = ({a;, a;)) of I. It is a well-known fact that all entries of
C~1! are positive numbers (see, e.g., Table 1 [Hu, p.69]). Moreover, if a;, > 1, we see, from
(2.11), that o4, (T')(Z) < 0 for every T, i.e., p < 1 for every HL C CP>!(g'). Hence we get
HP(I_y,g%) = {0} for all p > 1 in this case. Thus our task is to list up those (Xj, {c;,})
for which a;, < 1. In fact, from Table 1 [Hu, p.69], we obtain the following list of (X7, {e;, })
for which a;, < 1:

A {m)) a=—— (21), (A {e}) az=1

1
(Bi,{a1})  a1= (122), (D{a}) ar=1 (124),

]

Here we identify (By,{a1}) & (Ca{az}), (Di{o1}) = (D, {as}) = (Dy,{as}) and
(A, {a1}) = (A5, {q}) by diagram automorphisms. One can easily check (cf. [Y, §4.4])
that, when (X, {«;,}) coincides with one of the above list, the model space M = L/L’
corresponds to P! (I > 1), Q* = Graq, Q¥ (1 2 2) and Q%Y (I > 4). This completes
the proof of Theorem C.

Now, combining Theorem A (3), Theorem C and (2.7), we obtain

Corollary 3. Let [=1_1®lp® I, be a simple graded Lie algebra over C and let M = L/L’
be the model space associated with | = [_1 ® lo & l;. Let p : | — gl(S) be an irreducible
representation of . Then, except when M = P™ or Q™, every integrable system R of
differential equations of type (I, p) is locally isomorphic with the model system RP of type

(1, p).

3. Proof of Theorem 1

In this section we will show the inequivalence of E(k,n) and R(k,n) for (k,n) # (3,6) and

prove Theorem. Recall that R(k,n) is the model system of type (I, pg), where [ = sl(n—s, C)

with the gradation [ = [ @ [p @ [y given by (1.1) and pg is the exterior representation of

sl(n — 2,C) on /\"_k_1 C"~2. By the argument in §2.2 and §2.3, we see that R(k,n) is an
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integrable system of order pg = min{k,n —k} over the model space M = Gry_1 ,—2. Hence,
by Corollary D, R(k,n) is characterized solely by its symbol. Thus, to prove Theorem, we
need only to show that E(k,n) is not of type (I, po) for (k,n) # (3,6), i.e., the symbol of
E(k,n) at a generic point is not equivalent to the typical symbol of R(k,n) discussed in §2.2
for (k,n) # (3,6).
3.1. The symbol of the Pliicker embedding
We recall the calculations in §2.2. Let us take the following basis for V =1[_; and S,,
V:[_1:<Em-|1§i§k—1,k§p§n—2),
S’r‘ = <8(7;1a-"77;7‘ap17"'7p7“) | 1 §7'1 < <i'r § k_]-ak §p1 << Dy §’I’L—2>,
where
3(7;17 R i’hpla s 7pr) = €4, ARRRNA €i, A @(pl, s 7pr) €S = /\n—k—l(cn—Z.
Then we have

br(8(i1y - e oy ipy D1y - 0e)) (X, 0, X)) =
r!(—l)r(z sen0 Xiyp, 1)+ Xippoy) €pr A  Aep, Ae(p1y- -, Dr),
g

for X = Zip XipEpi € V. Thus, by fixing a basis of W = Sy and identifying SV* with the
ring of polynomials on V', we see that S; = V* and S, C S"V* is spanned by the minor
determinants of degree r of the matrix (X;p). By construction of R(k,n),

Po
S=Ps.
r=0
is the typical symbol of R(k,n). Hence, putting R, (k,n) = 7P°(R(k,n)), the symbol g, =
R, (k,n)N(S™T* @ E) of R,(k,n) is of type S, C S"V* at each point of M = Gri_1 2.

Now let us first show that R(k,n) is essentially a second order system. More precisely,
we claim

R(k,n) is the (po — 2)-th prolongation of Ra(k,n)
Namely po-th order system R(k,n) is obtained from the second order system Ry(k,n)

by adding successive (partial) derivatives to Ra(k,n). In order to show this, since n]_; :

R,(k,n) —» R,_1(k,n) is onto by construction, we need only to show that the symbol g, of
R, (k,n) is the (r — 2)-th prolongation of go. In fact we have

Lemma 3.1. The space S, C S™V* is equal to the (r — 2)-th prolongation p"=2)(Ss) of
S, C S2V*.
Here we recall that s-th (algebraic) prolongation p(®)(Ss) of Sy is given by
P (Sy) = S, ® @ V* N 52V,

Proof. Let T, be the annihilator of S, in S"V, where we identify S"V with the dual space
of S"V*. Then T5 is generated by the following vectors ;

Epi - Eqj + Eqi - Epj (1si<jsk-1Lk=p<qg=n-2)
Eypj - Eqj (1<i<k-1,k<p<qg=<n-2)
By~ By (1<i<j<k-1kSqSn—-2)
(

2 .
E; 15jSk-1LkZqg<n—2)
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where - denotes the symmetric product. Let T2(S) denote the annihilator of p(*)(Sy) in S5+2V.
Then we have
T =(f-g| f€ SV and geT).

Moreover, since Ss12 is generated by the minor determinants of degree s + 2 of the matrix
(Xip), we have

(3.1) T C T, .
We observe here that each monomial Eyp, i, - Ep,i, - -+ - Ep,_54,,, iIn S*T2V belongs to T
if there is a repetition among the indices ¢1,...,%542 Or p1,...,Ps+2. On the other hand,
given indices 41,...,9542 and pi,...,psy2 such that 1 < 43 < -+ < 443490 < k — 1 and
k<p; <--<psia <n—2 we see that (s + 2)! monomials

B

Ep Ep Ps+2%5(5+2) "

18g(1) 2%5(2)

where o runs for all permutations of degree s + 2, span (at most) 1-dimensional subspace

modulo T. 2(5). In fact, to see this, it is enough to line up all the permutations of degree (s+2)
in one row so that each permutation (Iq,...,ls42), where [; = o(i) (¢ = 1,2,...,5+ 2), is
obtained by a transposition from the former permutation in this row. Then the dimension

count shows _— _—
. s - n—~rK— .
cod1mT2()§ <s+2> X ( s+ 2 ) = dim S0,

which, together with (3.1), implies T 2(8) = Ts12. This completes the proof of Lemma.

In view of this lemma, we will discuss the inequivalence of second order systems F(k,n)
and Ry(k,n) in §3.3. Here the symbol go = Ra(k,n) N (S2T* ® E) of Ry(k,n) is of type
Sy C S?V* at each point of M = Gri_1,—2. Let {e;p} denote the dual basis of {E,;} in
V*. Then recall that Sy C S?V* is generated by the following elements of S?V* ;

Siqu:eip-ejq—eiq-ejp, (1§i<j§k—1,k§p<q§n—2).

3.2. The symbol of E(k,n)

For a set of parameters
n
a=(a1,...,0Qn), E aj =n—k,
j=1

the hypergeometric system of type (k,n) is the system of linear differential equations:

j=1 axiﬂ
k
0
Z Tij u (aj — 1u=0,
=1 ax”
0%u 0%u

8$ip8$jq 8$iq8$jp
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where
(xij) € M*(k,n) = {k x n-matrices such that no k-minor vanishes}.

The configuration space X (k,n) of distinct n points on the projective (k — 1)-space is by
definition given as
X(k,n) = GL(k)\M*(k,n)/H(n),

where H(n) is the group consisting of diagonal non-singular n-matrices. Though the above
system is not defined on X (k,n), its projective solutions are defined on it. So instead of
transforming the system into a GL(k) x H (n)-invariant form, we restrict this system to the
“subset” of M*(k,n) defined as follows:

1 0 0 1 1 1
0 1 -+ 0 1 Zypya -+ Top
00 -+ 1 1 Zppez -+ Tikn

Note that any element of M*(k,n) can be taken to this form by GL(k) x H(n), in other
words, this is a section of the projection M*(k,n) — X (k,n). So in the following, we identify
this subset with X (k,n), i.e., we regard (z;p) € X (k,n).

The restricted system E(k,n) = E(k,n;a1,...,a,) consists of the following differential
equations relative to the variables z;,, 2< i<k, k+2<p < n.

(@ =1+ 0)0jqu = jq(07 — g +1)(6; + oj)u,

a:jp(ep — Oép —+ 1)9]'(1’(1, = ijq(eq — Oéq + 1)0jpu,

32) Zig(0i + oi)bjqu = z5q(0; + aj)biqu,
TigLjpbipliqu = TipTjqbiqljpu,
where i . L
Oip = -’L'ip%ip, Oi= Y O, P =D 0y, 0= Bip-
p=k+2 i=2 i=2 p=k+2
and

=03+ -+ Qgy1-
Refer to [MSY1]. Here and in the following, the indices 7 and j run from 2 to k, and the
indices p and ¢ from k + 2 to n.

Now let us calculate the symbol of E(k,n). In the spirit of §2, we regard E(k,n) as the
subbundle of J2(E) defined by (3.2), where £ = C x X (k,n) is the trivial line bundle over
the configuration space X (k,n). Let Sa(x) = E(k,n) N (S?T ® C) be the symbol of E(k,n)
at £ = (z4p) € X (k,n). We regard Sy(z) as a subspace of S2T}*. Then, from (3.2), we see
that the annihilator Ty (z) of Sy(x) in ST, is generated by the following elements:

Ajq = Z(mipgipqugjq — TjqTiq&iqTipEip)

i,p
Bjpq = zjp Z Tip€ipTiqliq — Tjq Z TiqiqZipEip
i i
Cijq = Tiq Y TipbipTiqliq — Tiq D TigliqTipip:
P P

Dijpg = %iq®jpTip€ipTiq€iq — TipTjqTiqSiqTjpSip-
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where we put &, = %, and {&;,} forms a basis of T;. Since
Bipq = wjpqu((z Tip€ip)&iq — (Z Tiqkiq)&jp)s
i i
Cijq = Tigiq(D_ Tiplin)&iq — (O Tiplin)Ei),
P P

Dijpq = TipTigTipTiq(&ipbiq — Eialip)s

and

Ajq = qu(z xjpfjp)(Z(l — Tig)&iq) modulo  Dijpg,
P

i
T>(x) is generated by
Ajy = min’,
B;pq = npqu - anjzh
Czqu = nié-jq - njgiqa

z]pq §zpfyq §iq§jp7

N = ijpgjpa n? = Z(l — Tig)&iq-
P

where

i
Furthermore, the first three are equal to the following, respectively, modulo the generator

/
DZJPQ

Ajq = (Z(xip — TiqTjp)&ip)Eig>
,p
Equ = (Z(xiq = Tip)&ip)&jqs
éijq = (Z(wip — Zjp)&ip)jq-
P

Let us now compute the generators of Sy(z). We denote by {e;,} the dual basis of {&;,}.
Since any elements of Sp(z) are annihilated by above elements of T(z), we look for the
elements of the form

.. — p. .p. . L p zgpq
FEijpq = €ip - €jq + €iq - €jp + E : P €ts - €ms
L<m,s

1 2
+ E Qrde, .. - ems+§ RYPde, . 2.

m,r<s

Obviously, this satisfies Dy, .. (Eijpq) = 0. By requiring E;j,, to be annihilated by Coms
and by B,,,s, we can determine the coefficients P’s and Q’s as follows:

Lig — Ljq Lip — Ljp
Eijpq = €ip - €jq + €iq - €jp — ﬁ% " €jp — ﬁeiq " €jg
D ip iq jq
i — T p tq Tjq — Tip Jjp " Ciq § : ms ms .
iq ip ja ip s



The condition A, (Eijpq) = 0 is a little complicated; a calculation shows

Rpira — _Tia = TipTiq | Tjp Tig ~ Tjg | Tig Tiq ~ Tjp
ip o \o o .
(1= Zip)Tip  Tip Tip — Tjp ~ Tip Tig — Tip
. o LT o Tip — T in Tio — T
RiPa _ _ Ljp — TjqTip | Ljq Tip — Ljp + Lip Ljq — Tjp
iq . . . . . . )
(1 = Zig)Tiqg  Tig Tig — Tjqg  Tig Tig — Tip
RPa _ Lig — LipLjq | Lip Lig — Ljq 4 Ljq Lig — Tip
jp . . e . . .l
(1 xap)xjp Ljp Lip — Ljp  Ljp Tjq — Ljp
RiPa _ _ Lip — TigTjp | Lig Lip — Tjp + Ljp Lig — Lip
jq ’

(1 = jq)Tjq  Tjq Tig — Tjq  Tjq Tjq — Tjp
RYPY = (0 otherwise.

We put N
Rz‘p = R:;p q;

then, we see that

Tig — Ljq Lip — Tjp

Eijpg = €ip - €jq T €iq - €jp — " €ip - €jp = "€ig " €jq
p jp q J9
(33) _Yie~%p, . _ Tig“Tip,
o — . Cig T T P Cp Gl
q p 749 Jp

2 2 2 2
+ Ripeip” + Rigeiq” + Rjpejp” + Rjqejq”.

Here we note that F;;,, is a quadratic polynomial in four variables e;;,, e;4, €, and ej,. Thus,
the space Sa(x) is generated by these elements F;jp, (2 i<j<k,k+2<p<g=Zn).
In the following, we use R;, written in the form

_ TigTjp — Tig — Tjp + Tjq + LigTjp — Ljq

Ry =
x; 1— 2z,
(3.4) P P
+ Lig — Ljq + Lip — qu'
LTip — Ljp  LTip — Lig
3.3. Proof

By summarizing the discussion in the above subsections, our task is now to show the
inequivalence of the symbol spaces S2(z) and Sy for a generic point z of X (k,n). More
precisely, we need to show that, for a generic point € X (k,n), there does not exist a linear
isomorphism ¢ of V onto T} such that ¢* : S2T} — S2V* sends Sa(z) onto So. In other
words our task is to show, for a generic point x € X (k,n), the projective inequivalence of
the varieties V(Sa(x)) and V(S2), where V (S2(x)) and V (Ss) are varieties in the projective
spaces PT; and PV*, which are defined by the quadratic generators of Sy(x) and Sj,
respectively.

Here we note that, since the generators of Ss are minor determinants of degree 2 of the
matrix (e;p), V (S2) is called the Segre variety and coincides with the image of PF=2 x Pn—k—2
under the Segre embedding. Especially, we see that V(S3) is a smooth projective variety of
dimension n — 4. Referring to this fact, we will check the above inequivalence by looking at
the most primitive invariants of varieties, i.e., by counting the dimension of V(Sz(z)). In
fact we can check that

dimV(S(z)) < n —4,
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at a generic point x = (x;,) € X (k,n) as in the following.

Let us first examine the typical and easiest case when (k,n) = (3,7). The dimension of
Sy is 3; the space Sy is generated by

Eo3s6, Eo3s7, Easer-
For ease of reference we index the coordinates as follows:
(5825 Z26 1127) _ (iL‘ a1 042)
35 w36 x3r) \B m 12/’
Each F, is a homogeneous polynomial of e;,. We introduce inhomogeneous coordinates by

Y1 = egp/e2s, Yo = ear/eas, Z = ezs5/eas, Wi = esg/eas, Wa = e3r/eas.

Then the E,’s, more precisely the quotients E,/es52, are functions of the inhomogeneous
coordinates. The explicit forms are given by (3.3) and (3.4) as follows:
=N, r—f YW, — ’Yl—ﬁyl_
z—p a1 —n a1 —Z 11—pB
+ A1+ BiY1? + C1Z% + D1 W2,

a1 — I

Eoszs6 =W1 4+ Y12 —

ZW1

where 5 5 5 5
Al _ a1 a1 Y1 4 a1 Y1 4 a1 — "1 4 ’71’
T 1—x r—pf T —aq
ryr—x — 71+ Ty — T — —
B, — 7 " /3+ Y1 ﬁ+ B L m ,3,
o 1—o; ar—v71 o1 —Z
Nr—m-—-r+ao; mMmr—ar M- r—o
Cy = + + )
B 1-p B—x  B-m
a1 —0—a1+x a1 — T — X a1 — T
p_fn—f-mts pu-z oz a-a
88! l-m m-a m-p
Qg — T — — Qo —
Bagyy =Wa 4 Yoz~ 22" V27 T8y =By 0272,y
x— 3 O — Y2 Oy — T Y2 —
+ Ay + ByYo? + 0y Z% + Dy W2,
where 3 a4 5 5
Azza’z a2 ’Yz+a2 ’Yz+042 ’Yz+ ’72’
T 11—z r—p T — Qg
Tya —x — 72+ Ty2 — T — -
B, — Yo Y2 /B-I- Y2 ,3+ B L ,3’
1e%) 1— a9 Qg — Y2 o9 — I
Yo —7V2 — T+ Q2 Yo — Q2 Y2 — Q2 T — Qg2
Co = - - + :
B 1-p B—x  B—
o — 0 —ag+x Qg — X —x Q9 — I
p,_fo=f-mta fo-z -z -z
Y2 1= Yo—ay y2—p
Easer =ViWo + VoW — 22y, - L Ny, - R - Nyy, 2~ Ay,

a1 — 7 Qg — Y2 Qg — (1 Y2 —7
+ AY:1% + BY»? + CW,2 + DW,2,
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where

« —og — 71+ « — Qg — -
A= 271 2 — 71T 7V2 271 ’Yz+ 2 ’Yz+’Yl Y2

+ )
o1 11— o] —7Y71 Q1 — Qs

Q1yY2 — Q1 — Y2 + a1y2 — o1 — -
B— 172 1= 72 ’Yl_l_ 172 ’Yl+ 1 ’Yl_l_’)’z ’}’1’
Qo 1—as Qg —7Y2 Q2 —
o] — -1 o o] — o -« a1 — o
02721 Y2 1 2+’Y21 2+72 2_|_ 1 2’
26! I—m Mo 12
g — — 9+« a9 — QU -« a9 — o
D:’)’12 71 2 1+’le 1+’)’1 1+ 2 1.
V2 L= Ye—Qz  Y2—M

Thus, on the Zariski open subset (D7 # 0 and Dy # 0) of X (3,7), from the equations
FEs356 = FEa357 = 0, we can solve Wi and Wy in terms of Yy, Z and Ys, Z, respectively.
Substituting these into Fs3s7 = 0, we get a non-trivial equation for Y7,Y; and Z. Thus
we see that dim V' (S3(z)) = 2 at a generic point of X (3,7), whereas dim V (S2) = 3. More
precisely, we observe this fact from the following computation of the differentials:

z—pf Yl_al—x
@1 —M M-8

dE2356 = (1 — Z + 2D1W1) dWl

+(Z— il Wl—vl_ﬁ+231y1)dyl

a1 —7 a1 — T

1 (Yl— £ al_mW1+2olz> dz,
z—f3 v — B

v=By az_xZ+2D2W2> AW,
Qg — Y2 72—5

dE>357 = (1 -

+(Z— bl WZ—”_ﬁJrzBm)dY2

Oy — Y2 0y — I

+ <Y2— s 0‘2_”W2+2022> iz,
37—,3 72—,3

dFEo367 = <Y2 _ TP Y — Q27 Wy + 2CW1> dW,
a1 —M Y2— M

+ <W2— @2 "V, — 72_71Y2+2AY1> dv;
a1 —M Q2 — (1

+ <Y1 _ M TNy, TR +2DW2) AW,
a2 — Y2 Y1 — VY2

+ <W1 _M TNy, T2y 2BY2> dYs.

Qg — Y2 a1 — Q2

In the general case, we take the following inhomogeneous coordinates ;

YvP:€2p/e2k:+2 (k+2<p§n)7 Zi:eik+2/e2k+2 (2<z§k),
Wip =¢€ip/eaky2 2<iZk, k+2<p<n).

Then, similarly as in the case of (k,n) = (3,7), from the quadratic equation Eg;j 42, = 0,
we can solve Wi, (2<i <k, k+2 < p < n)in terms of Y, and Z; on the Zariski open
subset of X (k,n). Substituting these into Ejj;,, = 0, we get non-trivial equations for Y’s
and Z’s. Thus, at a generic point z € X (k,n), we obtain

dimV(S3(z)) < n—4=dimV(S,),
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which completes the proof of Theorem.

4. Disproof of a dream on FE(4,8;{1/2})

The authors are afraid that the reader would not be satisfied by the argument in the previous
section based on [S] and [Y], which are hardly elementary. So, in this section we give an
elementary proof for E(4,8;{1/2}) that Im(p) does not lie in Grz g C P9,

The idea is as follows: assume the contrary, then the restriction of the projective solu-
tion to any stratum consisting of degenerate 8-plane arrangements in P3 has its image in
quadratic hypersurfaces in a projective space, since Grassmannians can be defined only by
quadratic equations. If we choose a 1-dimensional stratum, the restricted equation is an
ordinary differential equation; so we can know whether its image lies in a quadric by the
vanishing of the Laguerre-Forsyth invariant.

Let us carry out the above program. We consider the degenerate stratum given by the

following matrix:
1 1 1

1 -1 -z
where each column defines a hyperplane. The integral belonging to the stratum is of the
form

/t“l Lo @1 — 1)@ (1 — 1)ty — t3) ¥ (1 — at3) 7 Ndty A dig A ds.

The associated ordinary differential equation in z is of fourth order and coincides with the
so-called generalized hypergeometric differential equation 4F3(a1, ag, as, aq; b1, ba, bs):

00 +b1—1)@+ba—1)0+b3—1)z—2(0+a1)(0+as)(0+ a3)(0 +as)z =0,

where 0 = zd/dz (refer to [E]), which admits the solution given by the following power
series:
Z (a1,n ag, n)(as,n)(as,n) .

b1, bz, )(b3,n)(1 n) ’

4F3(a1,as,as, ag; b1, ba, bs; )

where

ay =01 +ayt+agt+ast+ag—2, ag=aztaztag—1, az=a3, asr=1—ay

bi=a1+ast+az+astas+ag—2, bh=as+az+as+as—1, b3=az+ as,

and (a,n)=ala+1)---(a+n-—1).

Now, consider the case where all a; are equal to 1/2; the corresponding parameters are
ay = az = azg = aq4 = 1/2 and by = by = bz = 1. The question is to see if the curve in
P3 defined by the 4F5 lies on quadratic surfaces for this special choice of parameters. To
proceed further, we need to recall a bit of the Laguerre-Forsyth theory. We start with an
ordinary differential equation of the form

Y+ 4py 4+ 6pay +4psyt + pay = 0,
25



where y is the indeterminate of the variable x and the dot denotes the derivation relative to
x. We can find a non-vanishing function A and a new variable ¢ so that the function z = Ay
relative to the coordinate t satisfies the ordinary differential equation

(4.1) 2"+ Arsz’ + 142 =0,

where 73 and 74 are differential polynomials of p;, and ’ denotes the derivation relative to t.
The Laguerre-Forsyth theory (refer to, say, [MSY2], [W]) tells us that

O3 = radt®  and Oy = (r4 — 2ry)dt*

are projective invariants; that is, independent of the choice of such a coordinate ¢. For the
case 4F5(3, 2,1, 2;1,1,1), a calculation shows r5 = 0.
On the other hand, for the ordinary differential equation

2" +rz=0,

we can check that
(8rr” — 9(r")?)?

I= -

is an absolute invariant; in our case it is equal to

16(125x% — 46502 + 30752* — 3857223 + 307522 — 4650z + 125)2

I=- z(5bx + 1)5(z + 5)°

In particular, I is not constant.

We next consider the case where the projective curve defined by the equation (4.1) is on a
nondegenerate quadratic surface, say, (1¢4 = (23 in P3>((y, (2, (3,¢4). Then around a generic
point, we can choose a coordinate ¢ so that the set of independent solutions is {1,¢, f,¢f}
for a function f. This means that the equation (4.1) is the tensor product of two differential
equations ,

"

yi=0 and 5 =gy

namely, y1y2 are general solutions of (4.1). Such an ordinary differential equation is studied
by [Ha|] and its general form is known to be

"

P _nglll_2glzl+(gZ_gII_CQ)zZO’

where ¢ is a function and c is a constant. The invariants r3 and r4 of this equation are given

by

1 / 2 1 " 36 2
_ — — 4 —_ — _ — .
T3 29 y T4 c 59 259
If the image curve of a projective solution of the equation 4E3(%, %, %, %; 1,1,1) lies on

a nondegenerate quadratic surface, since r3 = 0, the function g must be constant, and so
r4 should also be constant, which implies I = 0. Therefore, our curve does not lie on any
nondegenerate quadratic surface.

Suppose that the image I is on the Grassmannian G736, then the image of a projective
solution of the restricted system 4F3 would be in the intersection Grsg N L of Grse and
a 3-dimensional linear subvariety L of P?°~!. Since Grassmannians can be defined only
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by quadrics, the curve Grz s N L in L must be the intersection of two quadric surfaces.
If the pencil generated by two quadric surfaces consists of degenerate quadrics only, the
intersection must be linear, which contradicts that the projective solution is defined by
linearly independent solutions.
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