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Abstract. For the hypergeometric system E(3, 6; α) of type (3, 6), two special
cases α ≡ 1/2 and α ≡ 1/6 are studied in [MSY] and [MSTY2], respectively.
The monodromy group of the former is an arithmetic group acting on a sym-

metric domain, and that of the latter is the unitary reflection group ST34. In
this paper, we find a relation between these two groups.
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1. Introduction

For the hypergeometric system E(3, 6;α) of type (3, 6), two special cases α ≡ 1/2
and α ≡ 1/6 are studied in [MSY] and [MSTY2], respectively. The monodromy
group of the former, say M(1/2), is an arithmetic group acting on a symmetric
domain, and that of the latter, say M(1/6), is the unitary reflection group ST34. In
this paper, we find a relation between these two groups; roughly speaking, M(1/6)
is isomorphic to M(1/2) modulo 6.

2. Hypergeometric system E(3, 6;α)

Let X = X(3, 6) be the configuration space of six lines in the projective plane
P 2 defined as

X(3, 6) = GL3(C)\{z ∈ M(3, 6) | Dz(ijk) 6= 0, 1 ≤ i < j < k ≤ 6}/H6,

where M(3, 6) is the set of 3 × 6 complex matrices, Dz(ijk) is the (i, j, k)-minor
of z, and H6 ⊂ GL6(C) is the group of diagonal matrices. It is a 4-dimensional
complex manifold.

A matrix z ∈ M(3, 6) defines six lines in P 2:

Lj : `j := z1jt
1 + z2jt

2 + z3jt
3 = 0, 1 ≤ j ≤ 6,
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where t1 : t2 : t3 is a system of homogeneous coordinates. For parameters α =
(α1, . . . , α6) (

∑
αi = 3), we consider the integral∫

σ

6∏
j=1

`j(z)αj−1dt, dt = t1dt2 ∧ dt3 + t2dt3 ∧ dt1 + t3dt1 ∧ dt2

for a (twisted) 2-cycle σ in P 2 −∪Lj . It is a function in z, but not quite a function
on X. So for simplicity, we fix local coordinates on X as 1 0 0 1 1 1

0 1 0 1 x1 x2

0 0 1 1 x3 x4

 ,

and consider such integrals above as functions in x = (x1, x2, x3, x4). Then they
satisfy a system of linear differential equations on X, called the hypergeometric
differential equation E(3, 6;α) of type (3, 6). The rank (dimension of local
solutions) of this system is six.

This system can be represented, for example, by

(α234 − 1 + D1234)D1u = x1(D13 + 1 − α5)(D12 + α2)u,

(α234 − 1 + D1234)D2u = x2(D24 + 1 − α6)(D12 + α2)u,

(α234 − 1 + D1234)D3u = x3(D13 + 1 − α5)(D34 + α3)u,

(α234 − 1 + D1234)D4u = x4(D24 + 1 − α6)(D34 + α3)u,

x1(α5 − 1 − D13)D2u = x2(α6 − 1 − D24)D1u,

x3(α5 − 1 − D13)D4u = x4(α6 − 1 − D24)D3u,

x1(α2 + D12)D3u = x3(α3 + D34)D1u,

x2(α2 + D12)D4u = x4(α3 + D34)D2u,

x2x3D1D4u = x1x4D2D3u,

where Di = xi∂/∂xi, αi...j = αi + · · · + αj , Di...j = Di + · · · + Dj .

3. A compactification X̄ of X(3, 6)

The configuration space X = X(3, 6) admits an obvious action of the symmetric
group S6 permuting the numbering of the six lines.

The Grassmann duality on the Grassmannian Gr(3, 6) induces an involution ∗
on X. A system of six lines, representing a point of X, is fixed by ∗ if and only
if there is a conic tangent to the six lines. The set of fixed points of ∗ on X is a
3-dimensional submanifold of X. Indeed it is isomorphic to the configuration space
X(2, 6) of six points on P 1.

The action of S6 and that of ∗ commutes. There is a compactification X̄ of X
on which S6 × 〈∗〉 acts bi-regularly, such that X̄/〈∗〉 ∼= P 4 (bi-regular).

4. Local property of E(3, 6)

Let Xijk be the set of points in X̄ represented by the system (L1, . . . , L6) of six
lines such that Li, Lj , Lk meet at a point. Then

X = X̄ − ∪1≤i<j<k≤6Xijk.

The system E(3, 6) can be considered to be defined on X̄ with regular singularity
along Xijk.
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The Schwarz map s(α) of the system E(3, 6;α) is defined by linearly indepen-
dent solutions u1, . . . , u6 as

s : X 3 x 7−→ u1(x) : · · · : u6(x) ∈ P 5,

It has exponent αi + αj + αk − 1 along Xijk.
In the x-coordinates, only 14 among the twenty Xijk are visible; they are given

by the equations D(ijk) = 0:

D(135) = x1, D(136) = x2, D(345) = x1 − 1, D(346) = x2 − 1,
D(125) = x3, D(126) = x4, D(245) = x3 − 1, D(246) = x4 − 1,
D(145) = x1 − x3, D(146) = x2 − x4, D(256) = x3 − x4, D(356) = x1 − x2,

D(156) = x1x4 − x2x3, D(456) = (x1 − 1)(x4 − 1) − (x2 − 1)(x3 − 1).

5. Monodromy groups

For 1 ≤ i < j < k ≤ 6, we introduce 6-vectors aijk and bijk:

a123 = (−d123, d12c3, 0,−d1c23, 0, 0), b123 = (1, 0, 0, 0, 0, 0),
a124 = (−d4c12,−d12, d12c4, d1c2,−d1c24, 0), b124 = (1, 1, 0, 0, 0, 0),
a125 = (−d5c12, 0,−d12, 0, d1c2, 0), b125 = (1, 1, 1, 0, 0, 0),
a126 = (1, 0, 0, 0, 0, 0), b126 = (−d126,−d1236/c3, d5c126, 0, 0, 0),
a134 = (d4c1,−d34c1, d3c14,−d1, d1c4,−d1c34), b134 = (0, 1, 0, 1, 0, 0),
a135 = (d5c1,−d5c13,−d3c1, 0,−d1, d1c3), b135 = (0, 1, 1, 1, 1, 0),
a136 = (−1/c2, c3/c2, 0, 0, 0, 0), b136 = (−d2,−d1236/c3, d5c126,−d1236/c3, d5c126, 0),
a145 = (0, d5c1,−d45c1, 0, 0,−d1), b145 = (0, 0, 1, 0, 1, 1),
a146 = (0, 1,−c4, 0, 0, 0), b146 = (d2/c2,−d1456,−d5c16, d3c1456,−d5c16,−d5c16),
a156 = (0, 0, 1, 0, 0, 0), b156 = (d2/c2,−d1456,−d156, d3c1456, d34c156, d4c156),
a234 = (−d4, d34,−d3c4,−d234, d23c4,−d2c34), b234 = (0, 0, 0, 1, 0, 0),
a235 = (−d5, d5c3, d3,−d5c23,−d23, d2c3), b235 = (0, 0, 0, 1, 1, 0),
a236 = (1,−c3, 0, c23, 0, 0), b236 = (d1/c1, 0, 0, d45c6, d5c6, 0),
a245 = (0,−d5, d45, d5c2,−d45c2,−d2), b245 = (0, 0, 0, 0, 1, 1),
a246 = (0, 1,−c4,−c2, c24, 0), b246 = (d1/c1, d1/c1, 0,−d3c456, d5c6, d5c6),
a256 = (0, 0, 1, 0,−c2, 0), b256 = (d1/c1, d1/c1, d1/c1,−d3c456,−d34c56,−d4c56),
a345 = (0, 0, 0,−d5, d45,−d345), b345 = (0, 0, 0, 0, 0, 1),
a346 = (0, 0, 0, 1,−c4, c34), b346 = (0, d1/c1, 0,−d3456, 0, d5c6),
a356 = (0, 0, 0, 0, 1,−c3), b356 = (0, d1/c1, d1/c1,−d3456,−d3456,−d4c56),
a456 = (0, 0, 0, 0, 0, 1), b456 = (0, 0, d1/c1, 0, d12/c12,−d456),

where
cj = exp 2πiαj , cij··· = cicj · · · , dij··· = cij··· − 1.

The circuit matrix around a loop in X going once around the divisor Xijk is given
by

Rijk = I6 − taijk · bijk.

These Rijk (1 ≤ i < j < k ≤ 6) generate the monodromy group M(α) of the system
E(3, 6;α). The monodromy group keeps the form

H = d6×


d1d2d345 d1d2d45 d1d2d5 0 0 0
c3d1d2d45 d1d23d45 d1d23d5 d1d3d45 d1d3d5 0
c34d1d2d5 c4d1d23d5 d1d234d5 c4d1d3d5 d1d34d5 d1d4d5

0 c2d1d3d45 c2d1d3d5 d12d3d45 d12d3d5 0
0 c24d1d3d5 c2d1d34d5 c4d12d3d5 d12d34d5 d12d4d5

0 0 c23d1d4d5 0 c3d12d4d5 d123d4d5


invariant:

tŘHR = H, R ∈ M(α),
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where ˇ is the operator which changes cj to 1/cj . The above facts are shown in
[MSTY1, MSTY2]. Note that the lists in these papers contains errors for a136 and
a145, so we tabulated here the corrected vectors.

The scalars aijk · tblmn have the following properties.

Lemma 1. (1) aijk · tbijk = 1 − cicjck (1 ≤ i < j < k ≤ 6).
(2) For the other entries, we omit explicit expressions: If aijk · tblmn is not zero as
a rational function of c1, . . . , c5 (c6 = (c1 · · · c5)−1), we replace the value simply by
z. Then the matrix AB := (aijk · tblmn) is given as

z z z z z z z 0 0 0 z z z 0 0 0 0 0 0 0
z z z z z z z z z 0 z z z z z 0 0 0 0 0
z z z z 0 z z z z z 0 z z z z z 0 0 0 0
z z z z 0 0 z 0 z z 0 0 z 0 z z 0 0 0 0
z z 0 0 z z z z z 0 z z z z z 0 z z 0 0
z z z 0 z z z z z z 0 z z z z z z z z 0
z z z z z z z 0 z z 0 0 z 0 z z 0 z z 0
0 z z 0 z z 0 z z z 0 0 0 z z z z z z z
0 z z z z z z z z z 0 0 0 0 z z 0 z z z
0 0 z z 0 z z z z z 0 0 0 0 0 z 0 0 z z
z z 0 0 z 0 0 0 0 0 z z z z z 0 z z 0 0
z z z 0 z z 0 0 0 0 z z z z z z z z z 0
z z z z z z z 0 0 0 z z z 0 z z 0 z z 0
0 z z 0 z z 0 z 0 0 z z 0 z z z z z z z
0 z z z z z z z z 0 z z z z z z 0 z z z
0 0 z z 0 z z z z z 0 z z z z z 0 0 z z
0 0 0 0 z z 0 z 0 0 z z 0 z 0 0 z z z z
0 0 0 0 z z z z z 0 z z z z z 0 z z z z
0 0 0 0 0 z z z z z 0 z z z z z z z z z
0 0 0 0 0 0 0 z z z 0 0 0 z z z z z z z



.

We are interested in the most symmetric cases: c1 = · · · = c6 =: c. Since c6 = 1,
we have

c = 1, −1, ω, −ω,

where ω is a primitive third root of unity. Excluding the trivial case c = 1 (for all
i, j, k, we have aijk = 0 or bijk = 0, and so Rijk = I6), there are three cases. By
the explicit expression of AB, we see

Lemma 2. When c = −1 and −ω, the entries of the matrix AB marked z are not
equal to zero. When c = ω, the diagonal elements of the matrix AB are zero, while
the other entries marked z are not zero.

The case c = ω is of special interest; this will be studied in [SY]. In this paper,
we treat the two cases

(α1, . . . , α6) =

{
Case 0 : 1/2 = (1/2, . . . , 1/2) and
Case 1 : 1/6 = (1/6, 1/6, 1/6, 1/6, 1/6, 1/6 + 1, 1/6 + 1).

In these cases, the circuit matrix Rijk around the divisor Xijk is a reflection of
order 2 with respect to the hermitian matrix H; the vector bijk can be expressed
in terms of aijk and H as

bijk = 2āijkH/(aijk, aijk)H ,

and so each reflection is expressed by a row 6-vector a = aijk as

Rijk = I6 − 2taāH/(a, a)H ,
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where (a, a′)H := āHta′.
From now on, everything related to the case 0 has 0 on ones top-right, and put

nothing for the case 1. For example,

c0
j = −1, d0

j = −2, d0
ij = 0, . . . ,

while
cj = −ω, dj = ω2, dij = ω2 − 1, . . . (ω2 + ω + 1 = 0),

and for the case 0, the hermitian matrix is H0, the roots are a0
ijk, and the reflections

are R0
ijk, while for the case 1, they are H, aijk and Rijk. Lemma 2 implies

Fact 1. For vectors aijk and a0
ijk, we have

aijk ⊥H almn if and only if a0
ijk ⊥H0 a0

lmn.

Fact 2. ([MSY]) The reflections R0
ijk generate the principal congruence subgroup

Γ(2) with respect to H0.

Fact 3. ([MSTY2]) The reflections Rijk generate the finite complex reflection group
ST34 (Shephard-Todd registration number 34, order 39191040 = 29 · 37 · 5 · 7).

These groups Γ(2) and ST34 will be studied in the next section.

6. Groups related to ST34 and Γ(2)

6.1. Arithmetic groups. The invariant form H0 is an integral symmetric matrix
unimodularly equivalent to

U ⊕ U ⊕ (−I2), U =
(

0 1
1 0

)
,

where Ik denotes the unit matrix of degree k. The symmetric domain H is defined
to be a component of

{z ∈ C6 | tzH0z = 0, tz̄H0z > 0} ⊂ P 5.

We set

OH0(Z) = {g ∈ GL6(Z) | tgH0g = H0},
Γ = {g ∈ OH0(Z) | g keeps each of two connected components},

Γ(2) = {g ∈ Γ | g ≡ I6 mod 2},
Γ(3) = {g ∈ Γ | g ≡ I6 mod 3},
Γ(6) = Γ(2) ∩ Γ(3) = {g ∈ Γ | g ≡ I6 mod 6}.

These groups act properly discontinuously on H. Note that

−I6 ∈ Γ(2), −I6 /∈ Γ(3), Γ(6).

It is shown in [MSY] that the group Γ(2) is generated by the reflections

R0
a = I6 − 2a taH0/(a, a)H0

with respect to the roots a of norm N(a) := −(a, a)H0 = 1 and that Γ is generated
by reflections with respect to the roots of norm 1 and 2.

Now we define the subgroup Γ(1) of Γ generated by reflections with respect to
the roots of norm 1 and the products of two reflections with respect to the roots of
norm 2. Note that

[Γ, Γ(1)] = 2, Γ(2) ⊂ Γ(1).
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6.2. Finite groups ([Atlas]). The invariant hermitian form H is negative definite.
It is shown in [MSTY2] that the twenty reflections Rijk generates a unitary reflec-
tion group often called ST34. It is a reflection group in GL6(Z[ω]) with structure

ST34 = 6.G.2,

where

• 6 stands for the cyclic group of order 6,
• G stands for the simple group PSU4(3),
• 2 stands for the cyclic group of order 2,
• 6 is a normal subgroup of ST34 with ST34/(6) ' G.2 and
• 6.G is a normal subgroup of ST34 with ST34/(6.G) ' 2.

Note that 6 corresponds to the group 〈−ωI6〉 generated by the scalar matrix −ωI6,
and 2 corresponds to det = ±1, i.e., S(ST34)/〈−ω〉 is isomorphic to the simple
group G, where S(ST34) denotes the subgroup of ST34 with det(g) = 1.

We set

GO−
6 (3) = {g ∈ GL6(F3) | tgHg = H}.

It is known that there exist two kinds of non-degenerate quadratic forms on (F3)6

with Witt defect 0 and 1. Our H gives the form with Witt defect 1. It is shown in
[Atlas] that this group has the structure

GO−
6 (3) = 2.G.(22).

Note that the center of GO−
6 (3) is {±I6} and (22) corresponds to the characters

det(g) and #2(g), where #2(g) means the spinor norm which is the number of
reflections with N(vj) = 2 modulo 2 when g is expressed as a product of reflections
R0

vj
with N(vj) = 1, 2.

We set

GΩ−
6 (3) = {g ∈ GO−

6 (3) | #2(g) = 0}.

Since −I6 ∈ Γ(2), we have #2(−I6) = 0. Note that the kernel of the natural map

p : Γ → GO−
6 (3)

is Γ(3).

7. Relation between the two monodromy groups

Proposition 1. The correspondence

Rijk 7−→ R0
ijk

induces a homomorphism of ST34/Z onto Γ(2)/N , where Z is the group generated
by ωI6 (index 2 subgroup of the center 〈cI6〉 of ST34), and N is a normal subgroup
of Γ(2) included in Γ(6).

Proof. We first show that we can choose a set of generators of ST34 as

GenRef := {R346, R245, R124, R123, R126, R156}.

Set

a1 = a346, a2 = a245, a3 = a124, a4 = a123, a5 = a126, a6 = a156

and

R1 = R346, R2 = R245, R3 = R124, R4 = R123, R5 = R126, R6 = R156.
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Note that the inner products of the six roots are given as

((ai, aj)H)i,j=1,...,6 =


2 c 1 0 0 0
c̄ 2 1 0 c̄ 0
1 1 2 c̄ 0 0
0 0 c 2 0 0
0 c 0 0 2 −1
0 0 0 0 −1 2

 .

The six reflections are related as
R1 − R2 − R3 − R5 − R6

\ 3 /

R4

This diagram reads: If two reflections R,R′ ∈ GenRef are joined by an edge, then
(RR′)3 = I, otherwise they commute. The node with label 3 means the following:

{(a3, a4)H(a4, a5)H(a5, a3)H}2 = c̄2 (= third root of unity),

and
(R3R4R5)2(R3R5R4)2 = I.

The structure theorem for ST34 established in [Shephard] asserts that the six re-
flections with the above relations form a set of generating reflections. Moreover it
is shown that a generator of the center of ST34 is given as

(R1R2R3R4R5R6)7 = cI.

We next show the corresponding relations for the reflections

R0
1 = R0

346, R0
2 = R0

245, R0
3 = R0

124, R0
4 = R0

123, R0
5 = R0

126, R0
6 = R0

156

hold modulo 6:
• For Ra, Rb ∈ GenRef, if (RaRb)2 = I then (R0

aR0
b)

2 = I. (Note that we do
not need modulo 6.)

• For Ra, Rb ∈ GenRef, if (RaRb)3 = I then (R0
aR0

b)
3 ≡ I mod 6.

• For the node with label 3, using the same notational convention as above,

(R0
3R

0
4R

0
5)

2(R0
3R

0
5R

0
4)

2 ≡ I mod 6.

• For the center, we have

(R0
1R

0
2R

0
3R

0
4R

0
5R

0
6)

7 ≡ −I mod 6.

All the above relations can be shown by computation. ¤

Theorem 1. (1) N = Γ(6) and

ST34/〈ωI6〉 ' Γ(2)/Γ(6) ' 〈Γ(2),Γ(3)〉/Γ(3).

(2) Γ(1) = 〈Γ(2), Γ(3)〉 and

Γ/Γ(3) ' GO−
6 (3), Γ(1)/Γ(3) ' GΩ−

6 (3).

Proof. (1) Orders of ST34/〈ωI6〉 and GΩ−
6 (3) are equal to 4 × |G|. Consider

the following maps

ST34
ϕ→ Γ(2)/N

f1→ Γ(2)/Γ(6)
f2→ 〈Γ(2), Γ(3)〉/Γ(3)

f3→ GΩ−
6 (3),

where f1, f2 are naturally defined and f3 is given by the natural projection

p : 〈Γ(2), Γ(3)〉 → GΩ−
6 (3).

Note that f1 is surjective and its kernel is Γ(6)/N , f2 is bijective, and that f3 is
injective.
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Put
f = f3 ◦ f2 ◦ f1,

and consider its kernel M . Since M is normal in Γ(2)/N ' ST34/〈ω〉, there are few
possibilities. Since the image of f has enough many elements, M does not contain
G. We can easily see that −I6 is mapped to −I6 by f . By comparing the orders
of Γ(2)/N and GΩ−

6 (3), we conclude M = I6 and f is bijective. Thus we conclude
that f3 is surjective, f1 is injective and N = Γ(6).

(2) It is clear that
〈Γ(2), Γ(3)〉 ⊂ Γ(1).

By the definitions of Γ(1) and GΩ−
6 (3), we can regard Γ(1)/Γ(3) as a subgroup of

GΩ−
6 (3) by the natural projection p. Since f3 is surjective,

p(〈Γ(2), Γ(3)〉) ' 〈Γ(2),Γ(3)〉/Γ(3) ' GΩ−
6 (3) ⊃ p(Γ(1)).

Thus we have 〈Γ(2),Γ(3)〉 ' Γ(1). ¤

8. Concluding remarks

8.1. Geometric interpretation. Since the domain H is simply connected, the
Schwarz map s(1/2) : X → H can be thought of the universal branched covering
branching along Xijk with index 2. The Schwarz map s(1/6) also branches along
Xijk with index 2. Thus, if M(⊂ P 5) denotes the image of this Schwarz map, the
composed map

s(1/6) ◦ s(1/2)−1 : H −→ M

is single-valued. Moreover, the theorem above implies that this map induces a
morphism

H/Γ(6) −→ M.

8.2. An elliptic analogue. Recall the original hypergeometric differential equa-
tion

E(a, b, c) : x(1 − x)u′′ + {c − (a + b + 1)x}u′ − abu = 0,

and the Schwarz map

s(a, b, c) : C − {0, 1} 3 x 7−→ u(x) : v(x) ∈ P 1,

where u and v are linearly independent solutions of E(a, b, c). It is classically well
known that the projective monodromy group of E(1/2, 1/2, 1) is conjugate to the
elliptic modular group Γ1(2), where

Γ1(k) = {g ∈ SL2(Z) | g ≡ I2 mod k}/center,

which is a free group, and acts properly discontinuously and freely on the upper
half-plane

H1 = {τ ∈ C | =τ > 0},
and the Schwarz map s(1/2, 1/2, 1) gives the developing map of the universal cov-
ering H1 → C − {0, 1} inducing the isomorphism

C − {0, 1} ∼= H1/Γ1(2).

On the other hand, the projective monodromy group of E(1/6,−1/6, 1/3) is the
tetrahedral group. Note that we have isomorphisms

Γ1(2)/Γ1(6) ∼= Γ1(1)/Γ1(3) ∼= tetrahedral group.

Thus our main theorem can be thought of a generalization of this famous fact.
Furthermore, this is not only an analogue: if we restrict the equations E(3, 6; 1/2)
and E(3, 6; 1/6) to the singular strata Xijk, Xijk ∩ Xlmn,. . . , we will end up with
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a 1-dim stratum, on which the monodromy groups of the two restricted equations
(to both of which the Clausen formula

3F2(2a, a + b, 2b; a + b + 1/2, 2a + 2b; x) = F (a, b; a + b + 1/2;x)2

for the hypergeometric functions is applicable) are related as the above elliptic
cases.
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and comments.
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