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In every textbook on elementary function theory you can find a definition of
Schwarzian derivative

{z;x} =
1
2

(
z′′

z′

)′
− 1

4

(
z′′

z′

)2

,

where ′ = d/dx, of a non-constant function z = z(x) with respect to x. You would
also find an exercise to show

(0.1) [PGL(2)-invariance] If a, b, c, and d are constants satisfying ad− bc 6= 0, then
{

az + b

cz + d
; x

}
= {z; x}.

(0.2) {z; x} = 0 if and only if z(x) = (ax + b)/(cx + d) for some constants a, b, c,
and d satisfying ad− bc 6= 0.

(0.3) [change of variable] If y is a non-constant function of x, then

{z; y} = {z; x}
(

dx

dy

)2

+ {x; y}.

(0.4) [local behavior] If z = xαu (α 6= 0), where u is a holomorphic function of x
non-vanishing at 0, then

{z; x} =
1− α2

4x2
+

a function holomorphic at 0
x

;

if z = log(xu), where u is as above, then

{z; x} =
1

4x2
+

a function holomorphic at 0
x

.

In this paper we discuss various generalizations of the Schwarzian derivative.
We start from recalling how it was found.
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1. A paper by H. A. Schwarz

Hermann Amandus Schwarz (1843–1921) is well known through Schwarz in-
equality, Schwarz’s lemma in elementary function theory, reflection principle, etc.
In his paper [Sch], he treated the hypergeometric differential equation

d2u

dx2
+

γ − (α + β + 1)x
x(1− x)

du

dx
− αβ

x(1− x)
u = 0,

and studied conditions for the parameters (α, β, γ) that every solution is algebraic,
and found explicit expressions of such solutions. Let us leave aside why he got
interested in such a problem, and follow his line.

Consider in general a 2nd order linear differential equation

(1)
d2u

dx2
+ p

du

dx
+ qu = 0.

Let u1 and u2 be two linearly independent solutions, and put z = u2/u1. One of
his main discoveries is the relation

(2) {z; x} = q − 1
4
p2 − 1

2
dp

dx

between z and the coefficients of the equation. He proved this by a staightforward
computation: We can assume u2 = zu1. Substitute u′2 = zu′1 + z′u1 and u′′2 =
zu′′1 +2z′u′1 +z′′u1 into u′′2 +pu′2 +qu2 = 0, and use the identity u′′1 +pu′1 +qu1 = 0.
We are led to 2z′u′1 + (z′′ + pz′)u1 = 0, that is,

p +
z′′

z′
= −2

u′1
u1

.

Differentiate both sides and we have

p′ +
(

z′′

z′

)′
= −2

u1u
′′
1 − (u′1)

2

u2
1

= −2
u1(−pu′1 − qu1)− (u′1)

2

u2
1

= 2q + 2

(
p
u′1
u1

+
(

u′1
u1

)2
)

.

Since u′1/u1 is already expressed in terms of p and z, substituting this expression,
we obtain the above relation.

For the hypergeometric equation, the relation above appears to be

(3) {z; x} =
1− λ2

4x2
+

1− µ2

4(1− x)2
+

1 + ν2 − λ2 − µ2

4x(1− x)
,

where
λ = 1− γ, µ = γ − α− β, ν = α− β.

On the other hand, the Wronskian u2du1/dx − u1du2/dx of the solutions u1

and u2 is equal to a constant times exp(− ∫
pdx), which, in the hypergeometric

case, turns out to be a constant multiple of x−γ(1 − x)γ−α−β−1. Thus if both u1

and u2 are algebraic, then γ and α + β must be rational numbers. Applying this
argument after the change of variable x → 1/x, we know that all of α, β, and γ
must be rational numbers.

He next considers a map

s : x 7→ z(x) = u2(x)/u1(x),
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which is nowadays called Schwarz’s s-map, and the s-image of the upper x-plane,
which turns out to be a triangle bounded by three arcs, is called Schwarz’s triangle.
The local behavior at x = 0 and x = 1 can be known by (3) and the property (0.4)
of the Schwarzian derivative (the change of variable x → 1/x leads also the behavior
at x = ∞); this tells you the three angles of the triangle. Let us sketch his strategy:
Possible analytic continuation of s can be illustrated by repeated reflection images
along the arcs of the triangle. Since u1 and u2 are algebraic, so is s; thus these
reflection images cannot be chaotic. This would determine possible three angles of
the triangle and so the values of the three parameters.

There are two essential points in his paper: the formula (3), which is the origin
of the name Schwarzian derivative, and the map s. In the following we study these
by considering their generalizations. A survey of Shwarzian derivatives can be found
also in [MSY2].

2. Normal forms of differential equations

Let us consider a system of linear differential equations in n variables x with
m unknowns u with rank (dimension of the solution space at a generic point)
r. Two such systems are said to be strongly equivalent if a change of unknowns
uj →

∑
i ki

jui takes one to the other, where det ki
j is a non-zero function of x. Two

such systems are said to be weekly equivalent if a change of unknowns like above
and a change of variables x take one to the other.

Problem is to find a set of invariants for these equivalence relations. Invariants
should be functions of the coefficients of the equations.

Let us consider the simplest non-trivial case: n = m = 1 and r = 2, i.e.,
equations in the form

(1) u′′ + pu′ + qu = 0.

If we change the unknown as u → ku (this means ‘substitute u = kv into the
equation, derive an equation with unknown v, and then write u instead of v’), we
obtain

u′′ +
(

p + 2
k′

k

)
u′ +

(
q + p

k′

k
+

k′′

k

)
u = 0.

If we choose k as a non-zero solution of (1), then the coefficient of u vanishes, and
moreover if we change the variable x into a non-trivial solution of this new equation,
then eventually the equation changes into u′′ = 0. Therefore, any equation (1) is
weakly equivalent to u′′ = 0; so there is no invariant in this case. Thus we consider
the strong equivalence class represented by the equation (1). If we choose k as above,
the survived coefficient p + 2k′/k would serve as an invariant; but unfortunately
this quantity is not determined uniquely by the coefficient of the equation (1). If we
choose k so that the coefficient of u′ vanishes, then the survived coefficient can be
luckily expressed in terms of p, q, and their derivatives; indeed, using k′/k = −p/2,
we have

q + p
k′

k
+

k′′

k
= q − 1

4
p2 − 1

2
p′,

which is exactly the Schwarzian derivative {z; x} according to (2). This can be
paraphrased as follows: In the (strong) equivalence class of the equation (1), there
is a unique equation without the term u′, the coefficient of u is given by (2), the
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Schwarzian derivative. In other words, for a given function q(x), the non-linear
equation

{z; x} = q(x)

can be solved as z = u2/u1, where u1 and u2 are linearly independent solution of
the linear equation

u′′ + qu = 0.

We present several lucky generalizations and a semi-lucky case in this note.

3. Geometrical treatment

Schwarz’s s-map suggests a geometrical counterpart of a system of linear dif-
ferential equations in n variables x with m unknowns u with rank r: the map

s : x 7−→ u1(x) : · · · : ur(x) ∈ Gr(m, r),

where u1, . . . , ur are column m-vectors giving linearly independent solutions, and
Gr(m, r) denotes the Grassmannian variety

GL(m)\{m× r-matrix of rank m};
in particular Gr(1, r) = Pr−1, the (r − 1)-dimensional projective space. Note that
the group GL(r) acts naturally on Gr(m, r) (from the right); in other words, the
group GL(r) is the group of motions of Gr(m, r).

Note that two strongly equivalent systems define the same s-maps, up to the
group of motions, and that two weekly equivalent systems give rise to the same
images under the s-maps, up to the group of motions.

The problem in §2 can be geometrized as follows: For two maps from the x-
space to Gr(m, r), decide when they are the same up to the group of motions. The
weak version of this problem is given by replacing ‘they’ by ‘their images’.

The solution in case m = n = 1 and r = 2 is given as follows: For given maps s1

and s2 both from x-space to P1, the maps s1 and s2 are related linear fractionally
if and only if {s1;x} = {s2; x} .

In general the study concerning the problem above is called geometry of sub-
manifolds or projective differential geometry.

We only have quite restricted results, some of which we present in this note.

4. m = n = 1: Projective curves

We consider maps of 1-dimensional source space to the target Pr−1. Since such
a map is called a curve, the problem is to find invariants for curves in the projective
space up to the projective motion group PGL(r).

An analogous problem is often taught and solved in an undergraduate course:
A set of invariants of curves, curvature and torsion, in the euclidean 3-space up to
the group of rigid motions appear as coefficients of a normalized equation (called
Frenet-Serret equation). Our problem is an variant of this problem; we utilize
projective motions in place of rigid motions.

This is solved by Halphen, Laguerre and Forsyth; a modern treatment can be
found in [Sea]. Let us summarize their results when r = 3, that is, when the target
is the plane P2. A curve in the plane can be expressed by a system of homogeneous



SCHWARZIAN DERIVATIVES AND UNIFORMIZATION 5

coordinates as u(x) = u0(x) : u1(x) : u2(x). The differential equation for the
unknown u ∣∣∣∣∣∣∣∣

u′′′ u′′ u′ u
u′′′0 u′′0 u′0 u0

u′′′1 u′′1 u′1 u1

u′′′2 u′′2 u′2 u2

∣∣∣∣∣∣∣∣
= 0

admits u0, u1, and u2 as solutions. If∣∣∣∣∣∣

u′′0 u′0 u0

u′′1 u′1 u1

u′′2 u′2 u2

∣∣∣∣∣∣
6= 0,

that is, if the curve is nondegenerate, then the equation has the form

u′′′ + p1u
′′ + p2u

′ + p3u = 0.

Conversely, for a 3rd order linear ordinary differential equation, three linearly inde-
pendent solutions give rise to a plane curve; other choice of solutions give another
curve which is projectively equivalent to the old one. The equation above for a
given curve u is not unique either, indeed, though ρu where ρ is a non-zero function
gives the same curve as u, the corresponding differential equation changes. It is
easy to see that a suitable choice of ρ makes the coefficient of u′′ zero. Let us write
the resulting equation as

u′′′ + P2u
′ + P3u = 0,

where the coefficients can be expressed as rational functions in p1, . . . , p3 and their
derivatives (parallel computation as in §2). Now take a solution f(x) of the equation

(4) {f ; x} =
1
4
P2

and change the variable x into y = f(x), and take a new unknown w = f ′u, then
the equation with unknown w and variable y is of the form

(5)
d3w

dy3
+ Rw = 0,

actually R = (P3 − P ′2/2)/(f ′)3. In this way, a plane curve determines uniquely an
equation of the form (5).

Moreover, since any solution of (4) is expressed linear fractionally by f , the
parametrization of the curve determined by (5) has exactly a freedom of PGL(2).
In this sense, a plane curve carries a natural projective structure.

Anyway in this case the quantity R (expressible as a rational function of
p1, . . . , p3 and their derivatives) serves as a complete invariant of curves for the
weak equivalence relation. Precisely speaking we should take Rdy3 rather than R
itself. An immediate but important consequence is that R vanishes identically if
and only if the curve is a conic. A generalization of this statement will be given in
§7.

For general r ≥ 3, a similar argument is known as Laguerre-Forsyth’s theory.

5. m = 1 and r = n + 1: Projective structures

In this section, we find invariants for non-degenerate maps

x = (x1, . . . , xn) 7→ u(x) = u0(x) : · · · : un(x) ∈ Pn

under the group PGL(n + 1) of motions of Pn.
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¿From the middle of the 19th century, study of systems of linear differential
equations admitting algebraic solutions became popular. Algebraic functions are
mult-valued, not easy to handle. So they wanted to derive, from the coefficients
of the equations, rational functions in the unknown, which are single-valued after
substituting (multi-valued) algebraic solutions. Around 1870, several people such
as J. Liouville, P. Pepin, L. Fuchs, F. Klein, F. Brioschi, C. Jordan, and E. Goursat
tried to make a general theory. Schwarz’s paper introduced in §1 solved this problem
for the hypergeometric equation. P. Painlevé studied this problem for equations for
which m = 1, n = 2, and r = 3. (cf. Notes by Painlevé on 1887.5.31, and by E.
Goursat on 1887.5.16 in Comptes Rendus.) Historical background can be found in
[Bou]. Let us follow their line. Consider a (non-degenerate) map

(x, y) 7→ (z, w),

which is multi-valued in a linear fractional way:

(z, w) 7→ (Z,W ) =
(

az + bw + c

a′′z + b′′w + c′′
,

a′z + b′w + c′

a′′z + b′′w + c′′

)
.

Find simple relations in z, w, Z, W , and their derivatives with respect to (x, y),
which are independent of the coefficients a, b, c, a′, . . . . Their results are as follows:
Put

I(z, w) =
zxxwx − wxxzx

zxwy − wxzy
, J(z, w) =

wyyzy − zyywy

zxwy − wxzy
,

M(z, w) =
zxxwy − wxxzy + 2(zxywx − wxyzx)

3(zxwy − wxzy)
,

N(z, w) =
wyyzx − zyywx + 2(wxyzx − zxywx)

3(zxwy − wxzy)
then

I(z, w) = I(Z, W ), J(z, w) = J(Z, W ),

M(z, w) = M(Z,W ), N(z, w) = N(Z, W ).

They called these expression the fundamental differential invariants. Note that the
(original) Schwarzian derivative involves 3rd derivative, but these invariants involve
only derivatives up to 2nd order.

Next, for the map (x, y) 7→ (z, w), define functions u0, u1, and u2 as

u0 = ρ = (zxwy − zywx)−1/3, u1 = zρ, u2 = wρ.

Note that the map can be regarded as the map

(x, y) 7−→ 1 : z : w = u0 : u1 : u2 ∈ P2

to the target space P2. It is very important to realize that the factor ρ is so
chosen that any linear fractional transformation of (z, w) causes (u0, u1, u2) a linear
transformation. Let us derive differential equations, with unknown u, satisfied by
u0, u1, and u2:

∣∣∣∣∣∣∣∣

uxx ux uy u
u0

xx u0
x u0

y u0

u1
xx u1

x u1
y u1

u2
xx u2

x u2
y u2

∣∣∣∣∣∣∣∣
= 0,

∣∣∣∣∣∣∣∣

uxy ux uy u
u0

xy u0
x u0

y u0

u1
xy u1

x u1
y u1

u2
xy u2

x u2
y u2

∣∣∣∣∣∣∣∣
= 0,
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∣∣∣∣∣∣∣∣

uyy ux uy u
u0

yy u0
x u0

y u0

u1
yy u1

x u1
y u1

u2
yy u2

x u2
y u2

∣∣∣∣∣∣∣∣
= 0.

The coefficients of uxx, uxy, and uyy are
∣∣∣∣∣∣

u0
x u0

y u0

u1
x u1

y u1

u2
x u2

y u2

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ρx ρy ρ
uxρ uyρ 0
vxρ vyρ 0

∣∣∣∣∣∣
= (ρ)3(uxvy − uyvx) = 1.

The other coefficients turn out to be as

uxx = Mux − Iuy + Au,

uxy = −Nux −Muy + Bu,

uyy = −Jux + Nuy + Cu,

where

A = 2(M2 + IN)−Mx + Iy, B = IJ −MN + My + Nx,

C = 2(N2 + JM)−Ny + Jx.

The computation above can be summarized as follows: For a given map

s : (x, y) 7→ v0 : v1 : v2 ∈ P2,

one can find a non-zero function ρ such that u0 = ρv0, u1 = ρv1, and u2 = ρv2

solve a system
uxx = p1ux + q1uy + r1u,
uxy = p2ux + q2uy + r2u,
uyy = p3ux + q3uy + r3u,

satisfying
p1 + q2 = 0, q3 + p2 = 0;

the coefficients pi, qi, and ri are uniquely determined by s, and can be expressed
in terms of z = v1/v0 and w = v2/v0; these give the relation between the solutions
and the coefficients.

Let us formulate this argument in general for n ≥ 2; formulae will be shorter.
We consider a map

s : x = (x1, . . . , xn) 7→ z = (z1, . . . , zn).

Denote the Jacobi matrix by

j(z, x) = (jk
i ), jk

i = ∂zk/∂xi,

and set Jk
i (z, x) = ∂xk/∂zi. We assume that s is non-degenerate, that is, det j(z, x) 6=

0. Putting

σ(z, x) =
1

n + 1
log det j(z, x), σi(z, x) =

∂σ

∂xi
,

γk
ij(z, x) =

∑

`

∂2z`

∂xi∂xj
Jk

` (z, x),

we define the Schwarzian derivatives of z as

Sk
ij(z;x) = γk

ij(z, x)− δk
i σj(z, x)− δk

j σi(z, x).
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Note that if n = 1 this expression is just zero, and that if n = 2 they coincide
the fundamental differential invariants above. Easy to check that

Sk
ij(z; x) = Sk

ji(z;x),
∑

k

Sk
ik = 0.

Let us compare the properties of these derivatives with those of the original Schwarzian
derivative (cf. (0.1),. . . ,(0.4)). We have (cf. [Y1])

(6.1) [PGL(n + 1)-invariance]

Sk
ij(Az; x) = Sk

ij(z; x), A ∈ PGLn+1.

(6.2) Sk
ij(z;x) = 0 ←→ z = Ax.

(6.3) [change of variables] If y is another set of variables,

Sk
ij(z; y)−

∑
p,q,r

Sr
pq(z; x)jp

i (x; y)jq
j (x; y)Jk

r (x, y) = Sk
ij(x; y).

(6.4) [local behavior] If a map x = (x1, . . . , xn) 7→ z = (z1, . . . , zn), n ≥ 2 ramifies
along x1 = 0 as

z1(x) = (x1)αv1, z2(x) = v2, . . . , zn(x) = vn,

∣∣∣∣
∂z

∂x

∣∣∣∣ = (x1)α−1u,

where vj(1 ≤ j ≤ n) and u are holomorphic not divisible by x1. Then for 2 ≤
i, j, k ≤ n,

Sk
ij{z; x}, Sk

1j{z; x}+ δk
j

1
n + 1

α− 1
x1

,
1
x1

S1
ij{z; x},

S1
1j{z; x}, x1Sk

11{z; x}, S1
11{z;x} − n− 1

n + 1
α− 1

x1

are holomorphic. Logarithmic ramification implies α = 0.

Let us state the conclusion obtained:

Conclusion: Two maps z1 and z2 from the x = (x1, . . . , xn)-space to Pn are pro-
jectively equivalent if and only if

Sk
ij(z1; x) = Sk

ij(z2;x), i, j, k = 1, . . . , n.

If we put ρ = (det j(z, x))−1/(n+1), then u0 = ρ, u1 = ρz1, . . . , un = ρzn solve
the system

(7) uij =
∑

k

Sk
ijuk + S0

iju,

where

S0
ij =

1
n− 1


∑

`,k

S`
ikSk

`j −
∑

k

∂

∂xk
Sk

ij


 ;

this is the relation between the solutions and the coefficients.
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6. The uniformizing equation of the moduli space of the marked cubic
surfaces

As an application of the relation between the solutions and the coefficients given
in the previous section, we present in this section a system of differential equations
which gives a uniformization of the moduli space M of the marked cubic surfaces.

Let us recall just an essence of cubic surfaces. Any non-singular cubic surface
in P3 can be obtained from P2 by blowing up six points, such that no three points
are collinear and no conic passes through the six points. The marking means, in
this setup, just the numbering of these six points. Let us represent these six points
by a 3 × 6-matrix, where the j-th column gives homogeneous coordinates of the
j-th point. Since no three points are collinear, we can assume that the first four
points have the coordinates 1 : 0 : 0, 0 : 1 : 0, 0 : 0 : 1, and 1 : 1 : 1; so the matrix
is of the form

(8)




1 0 0 1 1 1
0 1 0 1 x1 x2

0 0 1 1 x3 x4


 .

The assumption on the six points can be now stated as the non-vanishing of

D(x) : =
4∏

j=1

xj(xj − 1) · (x1 − x2)(x1 − x3)(x2 − x4)(x3 − x4)

× (x1x4 − x2x3){(x1 − 1)(x4 − 1)− (x2 − 1)(x3 − 1)}
× {x1(x2 − 1)(x3 − 1)x4 − (x1 − 1)x2x3(x4 − 1)}.

The moduli space M of the marked (non-singular) cubic surfaces can be identified
with

{x = (x1, . . . , x4) ∈ C4 | D(x) 6= 0}.
In [ACT], for each cubic surface S(x) determined by x ∈ M , they considers five
periods u0, . . . , u4 of S(x) (precisely speaking, periods of the triple cyclic cover of
P3 − S(x)), and shows that the (multi-valued) map

s : M 3 x 7−→ u0(x) : · · · : u4(x) ∈ P4

has its image in the 4-ball

B4 = {1 : z1 : · · · : z4 ∈ P4 | |z1|2 + · · ·+ |z4|2 < 1},
and that the inverse map is defined on B4 and is single-valued. This can be para-
phrased as ‘the moduli space M is isomorphic to the quotient of B4 under a discon-
tinuous group acting on it’ or simply ‘the moduli space admits a complex hyperbolic
structure’.

Now we are ready to apply our Schwarzian derivatives. The period map s above
should be a Schwarz map of a system, say E, of differential equations defined on
M . Analogous stories such as ‘elliptic curves and the hypergeometric equation’,
‘certain curves admitting a cyclic automorphism group and Appell-Lauricella’s hy-
pergeometric equation’ (see [Y2]), and ‘a 4-parameter family of K3 surfaces and
the hypergeometric equation of type (3, 6)’ (see §8) have been known and loved,
and these fed many mathematicians. So if we can explicitly know the system E,
that would be a lot of fun.
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Let us denote the Schwarzian derivatives Sk
ij(s;x) of the period map with re-

spect to x = (x1, x2, x3, x4) by Sk
ij , then the system E should be expressed as

uij =
∑

k

Sk
ijuk + S0

iju,

where the coefficients S0
ij can be determined by Sk

ij as is explained in §5. Important
is that since the Schwarzian derivatives are invariant under PGL(4), the coefficients
Sk

ij must be rational functions in x with poles only along the divisor D(x) = 0.
Moreover the poles along this divisor are fairly restricted by the local properties
(6.4), since it is known that the period map s ramifies along this divisor with index
3.

This information is sufficient to determine E, however it needs a complicated
computation. If we recall a classical fact that the moduli space M admits a regular
action of the Weyl group of type E6, and require E to be invariant under this group
action, then the computation becomes much simpler. We do not dare tabulate all
the coefficients of E, but we show just one of them:

S1
23 = −1

3

4∏

j=1

xj(xj − 1) · (x1 − x2)(x1 − x3)(x2 − x4)(x3 − x4)

× x1(x1 − 1) · x4(x4 − 1)(x1 − x3)(x1 − x2)/D(x).

On the other hand, as is suggested in [MT], this system E has a relation with
Appell-Lauricella’s hypergeometric differential equation. Indeed, E can be obtained
from Appell-Lauricella’s system of type D in nine variables with special parameters
by restricting this system on a 4-dimensional subvariety, extracting from this re-
stricted one a subsystem of rank 5, and finally performing an algebraic coordinate
change on this subsystem; for more detail, see [SY3] and [SY4].

7. m = 1 and r = n + 2: Conformal structure

We consider systems in n variables x = (x1, . . . , xn) with an unknown u of rank
n + 2 (cf [SY2]). When n = 1, these are equations for plane curves studied in §4.
Let us regard one variable say, xn, special and write the system as

(9)
∂2u

∂xi∂xj
= gij

∂2u

∂x1∂xn
+

n∑

k=1

Ak
ij

∂u

∂xk
+ A0

iju, (1 ≤ i, j ≤ n)

where
gij = gji, g1n = 1, Ak

ij = Ak
ji, A0

ij = A0
ji, Ak

1n = A0
1n = 0,

and assume det gij 6= 0. The normalization factor is defined as

eθ = det
(
u,

∂u
∂x1

, . . . ,
∂u
∂xn

,
∂2u

∂x1∂xn

)
,

where u is a column vector consisting of (n + 2) linearly independent solutions;
this quantity is independent of the choice of u up to multiplicative constants. By
multiplying a suitable function to the unknown u, we can assume that the condition

det(eθgij) = 1

holds.
This system is said to satisfy quadric condition if the image of the Schwarz map

x 7→ u(x) ∈ Pn+1
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is contained in a certain quadratic hypersurface.

We assume n ≥ 3; we studied already the case n = 1 and, when n = 2, the
situation is a bit different (see [SY1]). Then the main result is as follows: If the
system satisfies the quadric condition, then the coefficients are expressed as rational
functions in gij and their derivatives:

Aj
ik = Γj

ik − gikΓj
1n, A0

ik = −Sik + gikS1n,

where Γj
ik and Sik are the Christoffel symbols and the Schouten tensor of eθgij =:

hij . They are defined as follows:

Γj
ik =

1
2

∑

l

hjl(hil,k + hkl,i − hik,l), dhil =
∑

k

hil,kdxk.

Let Rj
ikl be the Riemannian curvature tensor:

dπj
i −

∑

k

πk
i ∧ πj

k =
1
2

∑

k,l

Rj
ikldxk ∧ dxl, πj

i =
∑

k

Γj
ikdxk.

The Ricci and the scalar curvatures are defined by

Rij =
∑

l

Rl
ilj , R =

∑

i,j

hijRij ,

respectively, and finally the Schouten tensor (relative to hij) is defined as

Sik =
1

n− 2

(
Rik − R

2(n− 1)
hik

)
.

8. The uniformizing equation of the moduli space of a 4-dimensional
family of K3 surfaces

We present a system of differential equations which gives a uniformization of
the moduli space X of the K3 surfaces obtained as double covers of P2 branching
along six lines, that no three lines meet (cf. [MSY1], [Y2]). Let us represent six
lines in the plane by a 3× 6-matrix, where the j-th column gives coefficients of the
linear equation of the j-th line. Since we can assume that the first four lines are
defined by t1 = 0, t2 = 0, t3 = 0, t1 + t2 + t3 = 0, these matrices are of the form (8).
The assumption on the six lines can now be stated as the non-vanishing of

D1(x) : =
4∏

j=1

xj(xj − 1) · (x1 − x2)(x1 − x3)(x2 − x4)(x3 − x4)

× (x1x4 − x2x3){(x1 − 1)(x4 − 1)− (x2 − 1)(x3 − 1)},
and the moduli space X can be identified with

{x = (x1, x2, x3, x4) ∈ C4 | D1(x) 6= 0}.
Let K3(x) be the surface obtained by desingularizing the double cover of the plane
branching along the six lines parameterized by x ∈ X. On each surface K3(x), there
are exactly six linearly independent 2-cycles, say γ0(x), . . . , γ5(x), and a unique
holomorphic 2-form, say φ(x) up to multiplicative constant. The period map

x 7−→ u0(x) : · · · : u5(x) ∈ P5, where uj(x) =
∫

γj(x)

φ(x)
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happens to have its image in a hyperquadric. The system of differential equations
is of the form (9) in the previous section; so all the coefficients can be expressed in
terms of the coefficients gij of ∂2u/∂x1∂x4. They are given as

g12 =
x4 − x3

x1 − x2
, g13 =

x4 − x3

x1 − x2
, g14 = 1,

g23 = 1, g23 =
x3 − x1

x2 − x4
, g34 =

x2 − x1

x3 − x4
,

g11 =
x2x3 − x4

x1(1− x1)
− x3(x4 − x2)

x1(x1 − x3)
− x2(x4 − x3)

x1(x1 − x2)
,

g22 = make exchanges x1 ↔ x2 and x3 ↔ x4 in g11,
g33 = make an exchange x2 ↔ x3 in g22,
g44 = make an exchange x1 ↔ x4 in g11.

On the other hand, it is known that this system is equivalent to the hypergeometric
system E(3, 6;α1, . . . , α6) of type (3, 6) with parameters αj = 1/3.

9. n = 1 and r = md: Systems of ordinary differential
equations of order d

Let us consider a system of ordinary differential equations with m unknowns
u = t(u1, . . . , um) of order d

(10) u(d) =
d−1∑

k=0

Pku(k).

Under a transformation of unknowns

(11) v = Ku, K = (kj
i (x))1≤i,j≤m, detK 6= 0,

the system (10) is transformed into

v(d) = (KP1 + dK ′)K−1v(d−1) + · · · .

Choosing K so that KP1 + dK ′ = 0, we can assume

(12) P1 = 0.

Change of variable y = f(x) together with the transformation (11), then the system
(10) changes into

(f ′)dv(d) + ad(f ′)d−2f ′′v(n−1) + (bd(f ′)d−3f ′′′ + cd(f ′)d−4(f ′′)2)v(d−2) + · · ·
= Ku(d) + dK ′u(d−1) +

d(d− 1)
2

K ′′u(n−2) + · · · ,

where

ad =
d(d− 1)

2
, bd =

d(d− 1)(d− 2)
6

, cd =
d(d− 1)(d− 2)(d− 3)

8
.

¿From this, we get

(f ′)dv(d) = (d(f ′)d−1K ′K−1 − ad(f ′)d−2f ′′)v(d−1) + (f ′)d−2P̃2v(d−2) + · · · ,
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where

(13) P̃2 = KP2K
−1 − bd

f ′′

f ′
− cd

(
f ′′

f ′

)2

+ d ad−1
f ′′

f ′
K ′K−1

−d(d− 1)K ′K−1K ′K−1 +
d(d− 1)

2
K ′′K−1.

Hence, to preserve the condition (12), K must be of the form

K = (f ′)(n−1)/2B, B : a constant matrix.

On the other hand, from (13), we have

trP̃2

m
=

d(d− 1)(d + 1)
6

{f ; x}+
trP2

m
.

Thus, by choosing f satisfying trP̃2 = 0, we get the following conclusion:

1. The system (10) can be normalized as

P1 = 0 and tr P2 = 0.

2. A transformation of unknown u and that of variable preserving this condition
has the form

y =
αx + β

γx + δ
,

v = (γx + δ)1−dBu, (B : a constant matrix).

3. Under this transformation, the matrix-valued quadratic form P2dx2 changes
only by a conjugate action of B.

We can moreover see that the i-differential form

Ri =
i−2∑

j=0

ai,j

(
d

dx

)j

Pi−j(dx)i (i ≥ 2),

where

ai,j = (−1)j (2i− j − 2)!(n− i + j)!
j!(i− j − 1)!

are also invariants up to conjugation of B. ([W],[Sea]). Note that when m = 1,
trP2 = 0 implies P2 = 0, of course. When m = 1 and d = 3, the conclusion above
reduces to that in §4, where projective curves are studied.

When m = 2 and d = 2, our argument can be translated into the geometry of
ruled surfaces in P3. In fact, four(= r = md) linearly independent solutions

(
u0

1

u0
2

)
, . . . ,

(
u3

1

u3
2

)
,

viewed as two curves

u1 = (u0
1, . . . , u

3
1) and u2 = (u0

2, . . . , u
3
2)

define a ruled surface swept by lines joining u1(x) and u2(x); these lines can be
thought of points in Gr(2, 4).
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10. n = m2 and r = 2m: Systems modelled after Gr(m,m2)

The reader might think that for any m, n, and r, there would be some analogue
of the Schwarzian derivative. Unfortunately things are not so simple. In this section,
we consider a seemingly simple case: systems of linear differential equations in m2

variables xij(1 ≤ i, j ≤ m) of rank 2m with m unknowns uk(1 ≤ k ≤ m) and the
changes K of unknowns

(uk) → (
∑

l

Kk
l ul), det(Kk

l ) 6≡ 0;

two systems related under such changes are said to be equivalent ([SY5], cf.
[SYY]). As the ratio of two linearly independent solutions of 2nd order ordi-
nary differential equation defines a map (the Schwarz map) from the x-space to
the projective line, any 2m linearly independent solutions of our system defines a
map from the x = (xij)-space to the (m, 2m)-Grassmannian variety Gr(m, 2m);
two equivalent systems define the same Schwarz map. We assume that this map is
non-degenerate. We shall show that we can follow the classical argument to some
extent but not to the quite same.

The system in question is an innocent analogue of the classical model case
(n = 1,m = 1, r = 2m), we just replace scalar variable and scalar unknown by
m×m-matrices. Or, this can be seen as a generalization of the case treated in §9 of
order d = 2 to a high dimensional source space. When m = 2, since Gr(2, 4) can be
embedded in P5 as a quadratic hypersurface, the uniformizing equation of the K3
surfaces presented in §8 can be transformed into a system modelled after Gr(2, 4).

Let us regard one variable, say x11, special and write down our system as

E = Em(a, b, α, β)





uk
:11:11 =

∑
l α

k
l ul

:11 +
∑

l β
k
l ul,

uk
:ij =

∑
l a

k
ijl u

l
:11 +

∑
l b

k
ijl u

l,

1 ≤ k, l, i, j ≤ m, where f:ij stands for ∂f/∂xij , and

ak
11l = δk

l , bk
11l = 0.

The Schwarz map of the system E is non-degenerate if and only if m2 ×m2-
determinant

W = det(ak
ijl)(i,j),(k,l)

does not vanish identically.
The transformation

uk →
∑

l

Kk
l ul, det Kk

l 6= 0

changes the coefficients a as

ak
ijl →

∑
Kk

p ap
ijq (K−1)q

l ,

in other words,
A = (ak

l ) → KAK−1, ak
l =

∑
ak

ijl dxij ,

and α as
A = (αk

l ) → (2K:11 + KA)K−1.

Thus we can normalize the system as A = 0, but still remains a freedom of
transformations K satisfying K:11 = 0; this implies that the survived coefficients
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of this normalized system can not be expressed by the coefficients of the given
system E. Nevertheless we can control the system: we can extract a set of essential
coefficients as follows.

Under the assumptions W 6= 0 and A∧A 6= 0, where A = (ak
l ), the coefficients

a determine the other coefficients b and β up to adding an exact 1-form dk(x),
where k(x) is independent of x11, to bi

i (i = 1, . . . , m). This ambiguity is caused by
the scalar transformation K = k(x)In.

Hence we have the following conclusion: Two systems Em(a, b, α, β) and Em(ā, b̄, ᾱ, β̄)
are equivalent if only if there is K such that

Ā = K−1AK, K = (Kk
l ), A = (ak

l ), ak
l =

∑
ak

ijl dxij ,

provided that W 6= 0 and A ∧A 6= 0.

11. Generalizations in different context

The Schwarzian derivative is used in the theory of univalent functions and in
the study of the Teichmüller spaces. A fundamental fact known as Nehari’s theorem
can be stated as

If a function z holomorphic in |x| < 1 is univalent, then

|{z;x}| ≤ 6(1− |z|2)−2.

Conversely if
|{z;x}| ≤ 2(1− |z|2)−2,

then z is univalent in |x| < 1.
This leads to the boundedness of the Bers embedding of the Teichmüller space.
Kobayashi-Wada [KY] defined a variant of the Schwarzian derivative for non-
degenerate maps between two Riemann manifolds, and established a generalization
of Nehari’s theorem.

On the other hand, Sato [Sat] studied obstructions for 2nd order ordinary
differential equations y′′ = f(x, y, y′) to be reduced to the equation y′′ = 0 under
transformations of (x, y)-space, and found that the obstructions can be expressed in
terms of the fundamental differential invariants I, J , M , and N appeared in §5. He
moreover derived obstructions for 3rd order ordinary differential equations y′′′ =
f(x, y, y′, y′′) to be reduced to the equation y′′′ = 0 under contact transformations
of (x, y, y′)-space, and called them contact Schwarzian derivatives.
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