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ABSTRACT

By the works of Gusarov [2] and Habiro [3], it is known that a local move called the
Cn move is strongly related to Vassiliev invariants of order less than n. The coefficient
of the zn term in the Conway polynomial is known to be a Vassiliev invariant of order n.
In this note, we will consider to what degree the relationship is strong with respect to
Conway polynomial. Let K be a knot, and KCn the set of knots obtained from a knot
K by a single Cn move. Let ∇K be the set of the Conway polynomials {∇K(z)}K∈K for
a set of knots K. Our main result is the following: There exists a pair of knots K1, K2

such that ∇K1 = ∇K2, and ∇KCn
1 �= ∇KCn

2 . In other words, the Cn Gordian complex
is not homogeneous with respect to Conway polynomial.
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1. Introduction

In 1937, Wendt [21] introduced an operation for knots and links. We usually call the
operation an unknotting operation (or briefly, a crossing-change), which is defined
to be a local move between two knot diagrams K1 and K2 which are identical except
near one crossing-point as in Fig. 1. Furthermore, we consider its spatial realization
as follows: For two knots k1 and k2 represented by K1 and K2, k1 and k2 are said to
be transformed into each other by an unknotting operation. Hirasawa and Uchida
[4] introduced the Gordian complex by the unknotting operation as follows: We
consider a knot as a 0-simplex (or vertex). For a positive integer m, we consider a
set of m knots, each pair of which can be transformed into each other by a single
unknotting operation, as an m-simplex. We regard this set of knots as a simplicial
complex, which is called the Gordian complex. It is easily checked that the Gordian
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Fig. 1.

Fig. 2.

complex is connected. In [4] it is shown that every 1-simplex of the Gordian complex
is a face of a simplex of arbitrary large dimension.

After Wendt, many local moves were introduced. In this note, we consider
Habiro’s Cn moves (cf. [3]), which are substitutions of n + 1 string trivial tan-
gles as follows: For two link diagrams K and L which are identical except near one
point as in Fig. 2, a local move between K and L is called a Cn move. Furthermore,
we consider its spatial realization as follows: For two knots k1 and k2 represented
by K1 and K2, k1 and k2 are said to be transformed into each other by a Cn move.

For n = 1, a Cn move is an unknotting operation. For n = 2, a Cn move is a
∆ move defined by Matveev [8] and by Murakami and the first author [11]. For a
local move λ, we can consider the λ Gordian complex in a parallel manner to that
in [4]. We consider a knot as a 0-simplex (or vertex). For a positive integer m, we
consider a set of m knots, each pair of which can be transformed into each other
by a single local move λ, as an m-simplex. The λ Gordian complex might not be
connected. The second author shows in [14] that every 0-simplex of the Cn Gordian
complex is a face of a simplex of arbitrary large dimension.

For a knot invariant v which takes values in some abelian group, v can be
extended to an invariant of singular knots, by the following: v(KD) = v(K+) −
v(K−), where a singular knot is an immersion of a circle into R3 whose singulari-
ties are transversal double points. Here KD, K+, and K− denote the diagrams of
singular knots which are identical except near one crossing-point, as in Fig. 3. An
invariant v is called a Vassiliev invariant of order n, and denote by vn, if n is the
smallest integer such that v vanishes on all singular knots with n + 1 double points
or more. If a knot invariant is a Vassiliev invariant of order m for some integer m,
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Fig. 3.

it is called an invariant of finite type. The Vassiliev invariants of order 0 and 1
are known to be trivial. The coefficient of the zn term in the Conway polynomial
is known to be a Vassiliev invariant of order n. By the works of Gusarov [2] and
Habiro [3], it is known that a local move called the Cn move is strongly related to
Vassiliev invariants of order less than n, as follows:

Proposition 1. Two knots have the same value for each Vassiliev invariant of
order less than n if and only if the two knots can be transformed into each other by
a finite sequence of Cn moves.

The following fact is an observation on a relationship between Cn moves and
Conway polynomials.

Theorem 2. There exists a pair of knots K1 and K2 such that ∇K1 = ∇K2, and
that ∇KCn

1 �= ∇KCn
2 .

Here KCn means the set of knots obtained from a knot K by a single Cn move.
∇K means the set of the Conway polynomials {∇K(z)}K∈K for a set of knots K.
The proof of Theorem 2 is given by a modification of the proofs of the following
Theorems 2a, 2b, and 2c.

The alternative form for the C2 move is given by the following Theorem 2a. The
reason why the coefficients of the z2 terms in the ∇i(z)’s are identical comes from
the observation of Okada [12].

Theorem 2a. For j polynomials with variables z, ∇i(z) = 1+a2z
2 +a

(i)
4 z4 + · · ·+

a
(i)
2�j

z2�j (1 ≤ i ≤ j), there exists a pair of knots K1 and K2 such that ∇K1(z) =
∇K2(z), ∇KC2

1 �� ∇1(z), . . . ,∇j(z), and ∇KC2
2 � ∇1(z), . . . ,∇j(z).

For a generalization, we have the following result for the Cn moves for n > 2. The
reason why the coefficients of the z2, . . . , z2(n−1) terms in the ∇i(z)’s are identical
follows from a technical argument. Therefore there is a hope that the observation
might be sharpened in the future.

Theorem 2b. Let n be an integer larger than 2. For j polynomials with variables z,

∇i(z) = 1 + a2z
2 + · · · + a2(n−1)z

2(n−1) + a
(i)
2nz2n + · · · + a

(i)
2�j

z2�j (1 ≤ i ≤ j),
there exists a pair of knots K1 and K2 such that ∇K1(z) = ∇K2(z), ∇KCn

1 ��
∇1(z), . . . ,∇j(z), and ∇KCn

2 � ∇1(z), . . . ,∇j(z).
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For the case n = 1 or for the unknotting operation, we have a rather weak
observation as follows:

Theorem 2c. For a polynomial with variables z, ∇(z) = 1 + a2z
2 + · · · + a2�z

2�,

there exists a pair of knots K1 and K2 such that ∇K1(z) = ∇K2(z), ∇KC1
1 �� ∇(z),

and ∇KC1
2 � ∇(z).

The above is just an observation, but it is a starting point for studing what
kinds of obstruction might make such a situation.

Remark. By a parallel argument, we can give the following result. Let K be a
knot, and KkCn the set of knots obtained from a knot K by applying Cn moves
at most k-times. There exists a pair of knots K1, K2 such that ∇K1 = ∇K2, and
∇KkCn

1 �= ∇KkCn
2 .

2. Surgical Description

It is well-known that any knot can be transformed to a trivial knot by crossing-
changes at suitable crossing-points. Every crossing-change is obtained by a ±1
surgery along a small trivial knot around the crossing-point with linking number 0.
Levine [6] and Rolfsen [16, 17] introduced a surgery description of a knot and a
surgical view of the Alexander matrix and Alexander polynomial as follows:

Proposition 3. Let K be a knot, and K0 a trivial knot. Then there exist n disjoint
solid tori T1, . . . , Tn in S3 −K0 and a homeomorphism φ from S3 −◦ T1 ∪ · · · ∪ ◦Tn

to itself such that

(1) φ(K0) = K,

(2) T1 ∪ · · · ∪ Tn is a trivial link,
(3) lk(Ti, K0) = lk(Ti, K) = 0 for each i, and
(3) φ(∂Ti) = ∂Ti and lk(µ′

i, Ti) = 1, where µi ⊂ ∂Ti is a meridian of Ti and
µ′

i = φ−1(µi).

From a surgery description, we have a surgical view of the Alexander matrix of
the knot as follows:

Proposition 4. Let K be a knot. Then K has an Alexander matrix MK = (mij(t))
of the following form:

(1) mij(t) = mji(t−1), and (2) |mij(1)| = δij ,

where δij = 1 (if i = j, ) 0 (if i �= j) is the Kronecker’s delta.

Here the size of MK is given by the number n in Proposition 3. The Alexander
polynomial of a knot K is given by the determinant of an Alexander matrix of K,
up to units.
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3. Proof of Theorem 2a

It is known that there is a close relationship between the Alexander polynomial
∆K(t) and the Conway polynomial ∇K(z) for a knot K: ∆K(t) = ∇K(t−1/2 −
t1/2). Let ∆i(t) = ∇i(t−1/2 − t1/2) (1 ≤ i ≤ j). It is also known that any
Alexander polynomial can be realized by a knot with unknotting number 1, as
shown by Kondo [5] and Sakai [19]. For the polynomial ∇j+1(z) = 1 − ja2z

2,
let ∆j+1(t) = ∇j+1(t−1/2 − t1/2). Let K∗ be a knot with unknotting number 1
and ∆K∗(t) =

∏j+1
i=1 ∆i(z)2. For the polynomial ∇j+2(z) = 1 − (a2 ± 1)z2, let

∆j+2(t) = ∇j+2(t−1/2 − t1/2). Let K∗∗ be a knot with unknotting number 1 and
∆K∗∗(t) = ∆j+2(t). Let K1 = K∗#K∗#K∗#K∗#K∗∗. Then K1, from a surgical
viewpoint, has an Alexander matrix of the following form:




∏j+1
i=1 ∆i(z)2 0 0 0 0

0
∏j+1

i=1 ∆i(z)2 0 0 0

0 0
∏j+1

i=1 ∆i(z)2 0 0

0 0 0
∏j+1

i=1 ∆i(z)2 0

0 0 0 0 ∆j+2(z)




.

A C2 move is realized by two crossing-changes (cf. [11]). If K ′
1 is obtained from

K1 by a single C2 move, then K ′
1 is obtained from K1 by two crossing-changes.

Therefore K ′
1, from a surgical viewpoint, has an Alexander matrix of the following

form:




∏j+1
i=1 ∆i(z)2 0 0 0 0 ∗ ∗

0
∏j+1

i=1 ∆i(z)2 0 0 0 ∗ ∗
0 0

∏j+1
i=1 ∆i(z)2 0 0 ∗ ∗

0 0 0
∏j+1

i=1 ∆i(z)2 0 ∗ ∗
0 0 0 0 ∆j+2(z) ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗




.

If ∆K′
1
(t) = ∆i(t), then we have that the determinant of the above matrix is

±∆i(t). In the case ∆i(t) �= 1, we consider the equation modulo ∆i(t)2, which
becomes a contradiction. In the case ∆i(t) = 1, we take another nontrivial ∆i′(t)
and consider the equation modulo ∆i′(t)2, which also becomes a contradiction.
Therefore we have ∇KC2

1 �� ∇1(z),∇2(z), . . . ,∇j(z).
Let K2 be a knot with unknotting number 1 and ∆K2(t) = ∆K1(t). By the fol-

lowing Lemma A, it can be seen that ∇KC2
2 � ∇1(z),∇2(z), . . . ,∇j(z), completing

the proof.
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Fig. 4.

Lemma A. Let K be a knot with algebraic unknotting number 1. For a set of
integers a′

2 = a2(K) ± 1, and arbitrary integers a′
2i (i = 2, 3, . . . , �), there exists a

knot K ′ ∈ KC2 with ∇K′(z) = 1 + a′
2z

2 + a′
4z

4 + · · · + a′
2�z

2�.

Here, a knot with algebraic unknotting number 1 means that a single crossing-
change yields a knot with a trivial Alexander polynomial. This definition is different
from the original one of Murakami [9], but Fogel [1] and Saeki [18] showed the
equivalence of these definitions.

Proof. Since K is a knot with algebraic unknotting number 1, there exists a cross-
ing at which the crossing-change yields a knot with a trivial Alexander polynomial.
We consider such a crossing as in the left of Fig. 4. We transform this part of K to the
right of Fig. 4 by a single C2 move. Here, m2, . . . , m� are the numbers of left-handed
full-twists. In the negative case mi < 0, it means |mi| right-handed full-twists. By
a parallel argument to that in Murakami [10], the difference of the Conway polyno-
mials is z2− (m2 +1)z4 + · · ·+(−1)�−2(m�−1 +1)z2�−2 +(−1)�−1m�z

2�, completing
the proof.

We remark that the proofs of Lemmas A and B were inspired by a talk of
Tsutsumi [20] at Tokyo Woman’s Christian University and by the master’s thesis
of Makino [7].

4. Proof of Theorem 2b

The proof of Theorem 2b is quite similar to that of Theorem 2a. Here we assume
that n > 2. Let ∆i(t) = ∇i(t−1/2 − t1/2) (1 ≤ i ≤ j). Let K∗ be a knot with
unknotting number 1 and ∆K∗(t) =

∏j
i=1 ∆i(z)2. Let K1 = K∗#K∗#K∗. Then

K1, from a surgical viewpoint, has an Alexander matrix of the following form:

∏j

i=1 ∆i(z)2 0 0

0
∏j

i=1 ∆i(z)2 0

0 0
∏j

i=1 ∆i(z)2


 .

A Cn move is realized by two crossing-changes. If K ′
1 is obtained from K1 by a

single Cn move, then K ′
1 is obtained from K1 by two crossing-changes. Therefore
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K ′
1, from a surgical viewpoint, has an Alexander matrix of the following form:



∏j
i=1 ∆i(z)2 0 0 ∗ ∗

0
∏j

i=1 ∆i(z)2 0 ∗ ∗
0 0

∏j
i=1 ∆i(z)2 ∗ ∗

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗




.

If ∆K′
1
(t) = ∆i(t), then we have that the determinant of the above matrix

is ±∆i(t). In the case ∆i(t) �= 1, we consider the equation modulo ∆i(t)2,
which becomes a contradiction. In the case ∆i(t) = 1, we take another nontriv-
ial ∆i′(t) and consider the equation modulo ∆i′(t)2. Therefore we have ∇KCn

1 ��
∇1(z),∇2(z), . . . ,∇j(z).

Let K2 be a knot with unknotting number 1 and ∆K2(t) = ∆K1(t). By the fol-
lowing Lemma B, it can be seen that ∇KCn

2 � ∇1(z),∇2(z), . . . ,∇j(z), completing
the proof.

Lemma B. Let K be a knot with algebraic unknotting number 1. For a set of
arbitrary integers a′

2i (i = n, . . . , �), there exists a knot K ′ ∈ KCn with ∇K(z) −
∇K′(z) = ±z2n−2 + a′

2nz2n + · · · + a′
2�z

2�.

Proof. Since K is a knot with algebraic unknotting number 1, there exists a cross-
ing at which the crossing-change yields a knot with a trivial Alexander polynomial.
We consider such a crossing as in the top-left of Fig. 5. By an ambient isotopy,

Fig. 5.
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we deform this part of K to the top-right of Fig. 5. Then we transform this part
of K to the bottom of Fig. 5 by a single Cn move. Here m2, . . . , m� are the num-
bers of left-handed full-twists. In the negative case mi < 0, it means |mi| right-
handed full-twists. Here m2, . . . , mn−2 are assumed to be −1, and mn−1 = 0. By
a parallel argument to that in [10], the difference of the Conway polynomials is
(−1)n−2z2n−2 +(−1)n−1(mn +1)z2n · · ·+(−1)�−2(m�−1 +1)z2�−2 +(−1)�−1m�z

2�,
completing the proof.

5. Proof of Theorem 2c

The proof of Theorem 2c is also quite similar to those of Theorems 2a and 2b.
First, we consider the case ∇(z) �= 1. Let ∆(t) = ∇(t−1/2 − t1/2). Let K∗ be

a knot with unknotting number 1 and ∆K∗(t) = ∆(t)2. Let K1 = K∗#K∗. Then
K1, from a surgical viewpoint, has an Alexander matrix of the following form:(

∆(t)2 0

0 ∆(t)2

)
.

If K ′
1 is obtained from K1 by a single crossing-change, then K ′

1, from a surgical
viewpoint, has an Alexander matrix of the following form:


∆(t)2 0 ∗

0 ∆(t)2 ∗
∗ ∗ ∗


 .

If ∆K′
1
(t) = ∆(t), then we have that the determinant of the above matrix is

±∆(t). We consider the equation modulo ∆(t)2, which becomes a contradiction.
Therefore we have ∇KC1

1 �� ∇(z).
Let K∗∗ be a knot with unknotting number 1 and ∆K∗∗(t) = ∆(t), and K∗∗∗

a knot with unknotting number 1 and ∆K∗∗∗(t) = ∆(t)3. Let K2 be the connected
sum K∗∗#K∗∗∗. It can be easily checked that ∇KC1

2 � ∇(z).
Next, we consider the case ∇(z) = 1. We take a nontrivial Conway polynomial

∇′(z). Let ∆′(t) = ∇′(t−1/2 − t1/2). Let K∗ be a knot with unknotting number 1
and ∆K∗(t) = ∆′(t)2. Let K1 = K∗#K∗. Then K1, from a surgical viewpoint, has
an Alexander matrix of the following form:(

∆′(z)2 0

0 ∆′(z)2

)
.

If K ′
1 is obtained from K1 by a single crossing-change, then K ′

1, from a surgical
viewpoint, has an Alexander matrix of the following form:


∆′(z)2 0 ∗

0 ∆′(z)2 ∗
∗ ∗ ∗


 .
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If ∆K′
1
(t) = 1, then we have that the determinant of the above matrix is ±1.

We consider the equation modulo ∆′(t)2, which becomes a contradiction. Therefore
we have ∇KC1

1 �� 1.
Let K2 be a knot with unknotting number 1 and ∆K2(t) = ∆′(t)4. It can be

easily checked that ∇KC1
2 � 1, completing the proof.

Remark. In the preliminary note, we have discussed the following question: Let
m1, m2 be sufficiently greater than n. Does there exist a pair of knots K1, K2

such that Vm1K1 = Vm1K2, and Vm2K
Cn
1 �= Vm2K

Cn
2 . Here Vm means the set of

Vassiliev invariants of order less than or equal to m (m ≥ 2), and VmK the value
set {(v, {v(K)}K∈K)}v∈V� for a set of knots K. The question is still open.
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