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Introduction

Isomonodromy Deformations

Riemann (1857). Isomonodromy deformations: find functions with varying regular
singularities and constant monodromy. (— birth of Riemnann-Hilbert problems).

R. Fuchs (1907), Schlesinger, Garnier (1912). Study of ODEs with prefixed
monodromy, Fuchsian syetems, Schlesinger equations, Painlevé equations.

Jimbo, Miwa, Ueno (1981). Systematic treatment of generic isomonodromy
deformations (generic = differential systems have generic matrices, e.g. non-resonant,
diagonalizable, etc)
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From the analytic viewpoint....

Approach 1. [Jimbo-Miwa-Ueno] Given a differential system

dY . . . .
pral A(z,u)Y, A(z, u) is rational of z € C, analytic of u € C polydisc, (1)
z
prove that a class of fundamental matrix solutions with “canonical form” have
constant “essential” monodromy data (monodromy matrices, monodromy exponents)
if and only if they satisfy a Pfaffian system

dY =w(z,u)Y, wis a l—formin dz, duy, ..., dup. (2)

with w(z, u) determined by A(z, u).

Approach 2. A Pfaffian system (2) is given, satisfying the Frobenius integrability
condition
dw=wAw, w(z, u) = A(z, u)dz.
u fixed

= 3 fundamental matrix solution Y(z, u) of (2) with constant monodromy w.r.t. z.

Depending on w(z, u), prove if the Pfaffian system admits fundamental matrix
solutions with a canonical structure and constant “essential’” monodromy data.
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Introduction

Today's seminar...

We consider a specific case: a linear n x n differential system:

day _ A(u)

s (A(u)+ 7) Y, Au) = diag(un, ..., un),

A(u) holomorphic of u = (ui,...,un) in a polydisc D.

Some eigenvalues may coalesce in D

uj—ug —0 for some j # k.

e The purpose of the talk is to describe how the isomonodromy deformation theory
can be extended to include the case of coalescing eigenvalues.

This is a “non-admissible deformation” in the standard isomonodromy deformation
theory of Jimbo-Miwa-Ueno, Fokas-Its-Kapaev-Novokshenov.

Is it possible to compute fundamental matrix solutions and monodromy data valid for
the whole D ?

e Some applications: Frobenius manifolds, Painlevé equations.
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System
dy

g;:<MW+AS»V3 A(u) = diag(us, ..., un),

is important in several respects.

o It is related to Fuchsian systems by Laplace transform [Balser-Jurkat-Lutz,
Schifke]

Y(z) = / e*W(A\)d\, v is a suitable path,
¥

- W, Bri=—Ed(A+1)
A*Uk

Coalescence of eigenvalues +— coalescence of Fuchsian singularities.
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e n=3.

Davide

In some cases, isomonodromy deformation equations for A(u) are equivalent to
the Painlevé VI equation
d?y(x)
dt?

dy
dx

F = quadratic polyn. in % and rational in (x,y).

= F(x,y,

F has poles in x =0, 1, c0.

The entries of A(u) are explicit algebraic functions of a Painlevé transcencents
y(x)
[Harnad 1994; Dubrovin 1996; Mazzocco 2002; Boalch 2004; Degano & DG 2021]

Singularities x = 0,1, co correspond to coalescing eigenvalues through

up — uy

X = .
uz —
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Davide

o Analytic theory of semisimple Dubrovin-Frobenius Manifolds [Dubrovin,
Hertling, Manin, etc]

An analytic manifold M of dimension n, with a flat metric 7.
Any tangent space T,M is a Frobenius algebra (product - , commutative,
associative with unit) such that

n(X-Y,Z)y=n(X,Y -Z), X,Y,Z tangent vectors

In flat coordinates t = (t1, ..., t")

( 1o} o 0 ) O3F 5 1 N

—_— Y — | = ——, o, B,y=1,...,n

"\ ot 9B oy ot 9tP oty K

satisfying the WDVV equations of associativity of 2D-topological field theory:

00.030~F n7? 8,8,0,F = the same with exchange o <+ v.

n7P are matrix entries of (77(80”85))717 On 1= et

Note: Precise and complete definitions are omitted here...
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Examples
e Singularity theory: M is space of versal deformation of simple singularities.

Example: M = {(x;a) = x"L + ap_1x""1 + -+ + a1x + 20}

e Orbit spaces M = C"/W, W = Coxeter group. Analogous cases with extende affine Coxeter
groups, Jacobi groups, etc.

e Quantum Cohomology QH®(X) as a t-deformation of the classical cohomology H® (X, C) of a
smooth projective variety X, related to Gromov-Witten invariants theory

(the cup-product is deformed, so that the cohomology algebra becomes semisimple; F(t)
generating function of Gromov-Witten invariants of genus zero).

Important characterisation [Dubrovin]. A manifold M is Frobenius if and only if there
is on M a certain family of flat connections depending on parameter z € C.

If (TpM,-) is semisimple (no nilpotents) on open-dense subset of M, there are local
canonical coordinates (uy, ..., un), uj # uy for all j # k.

Fatness is equivalent to the isomonodromy deformation equations of

oY A
= (/\(u) + ﬂ) Y, A skew-symmetric.

0z z
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Important consequence: Monodromy data as local moduli

Locally constant monodromy data parameterise local charts of the Frobenius manifold.
From one chart to another through explicit action of braid group on data.
Given the differential system
— Compute monodromy data of a chart
— Arithmetically compute data for another chart by braid group action
— From the new data, reconstruct the system (i.e. A(u)) in another
chart through a Riemann-Hilbert inverse problem.

e This gives analytic continuation of Frobenius structure, because from a specific
fundamental n x n matrix solution (Levelt form)

Y(z,u) (qup u )

there are explicit parametric formulae allowing to reconstruct the local Frobeniius
structure

ta(u) = napt’ = Zti),ao )oir1(v),

N
F(t(u)) = % {tufs D biao(u) disa(u) — > (dina(v)dna(u) + ¢i1‘3(U)¢i1‘O(U))}

i=1 i=1
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Back to our case: Isomonodromic

dy

(DS) o

A
(/\(u) + (u)> Y, A(u) holomorphic in polydisc D

1. D) :={ueC| ma><j|uj-—uj(-)\ < €}, uj(.’;éug Vj # k.
Admissible deformations [Jimbo-Miwa-Ueno]: just compute the monodromy data

of gy o
<= (/\(uo) Al )> Y.

2. D(uf),  uf = uf for some j # k.

Non-admissible deformations. We have coalescence of eigenvalues of \ at a

coalescence locus A :=D(u) N (U{“J —u, = 0})
J#k
Problems with fundamental matrix solutions may occur at A. It is not clear if
and when we can define and compute monodromy data for the whole D(u€)

starting from
A C
v _ (/\(uc) + ﬂ) Y.

dz z
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Example of problematic issues.

Z-[(32)-2(2 2

The coalescence locus is A = {u = 0}.

z 0
Y(z,u) = Y(z,u) canonical behaviour
0 Re
oo k
-~ (1)« 1 37 37
Y(z,u)~/+§? i 2T oo 7?<arg(zu)<7

e Coefficients of asymptotic expansion have poles at A.
e A is a branching locus:

~ 0 0 +o0
Y(z,u) =1+ ( u{ uz e Ei(uz) — 1] 0 > , Ei(¢) = /5 x e dx
' o - s (_p)mil .
Ei(uz) = —log(zu) — v + Z — (uz)™, uz — 0.
m=0 )

e lim, o Y(z,u) is not defined. So, it is not equal to solution of system with u = 0:

a=[+2 (2 )] (3 5. sec
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The generic case of Jimbo, Miwa, Ueno

Deformations in D(u®) = {u eCn

maxy<j<n |Uj — ujo\ < eo} polydisc at u®.
No coalescence points

Solutions at z =

Black:, Stokes rays at u®

e Stokes rays of A(u°)
R((1) — u)z) =0, S((uf - uf)z) <O.

No rays here
e Admissible direction at u°: argz = (%)

NoFays here
T . e\ Stokeg rays at u € D(u”)
not coinciding with any of the Stokes rays

above.

e Stokes rays of A(u)
R((vj —uk)z) =0, ((yj — uk)z) <O0.

Stokes rays of A(u) don't cross admissible direction (mod 7), as u varies in
D(u®) small.
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A classical result (Sibuya, Wasow, etc). D(u°) small.

1) 3 unique formal fundamental matrix solution
o0
Ye(z,u) = (1 + Z Fe(u)z=4)28WeN0) - B(y) := diag(Au1, - - - , Ann);
=1

F¢(u) holomorphic in D(u°) and recursively computable.

2)V ez 36> 0 small

and sectors

A

800 y

s O+ (w—r)—b<argz < (rO +vr)+6, vez,

and 3 unique fundamental matrices Y, (z, u) holomorphic in R(C\{0}) x D(u°)
having asymptotics

Yu(z,u) ~ Ye(z,u), z—ocoin s
Here R(...) means universal covering of (...).

e Stokes matrices S, (u):
Yl/+1(z7 u) = YV(Z7 U) SV(U)’
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Solutions at z = 0.
ad .
3 “Levelt” form  Y(O(z,u) = G(O)(u)<l + Zaj(u)zf>zDzL,
j=1
D diagonal of integers, L = Jordan + nilpotent.

G (u) and a;(u) holomorphic in D(u®); series uniformly convergent for |z| bounded.

e Central connection matrix C,: Y, (z,u) = YO(z,u) C,(u).
e Monodromy corresponding to z — ze?™'.
For Y(0):
M = 27iL,
For Y,:

riBra @ 1 _ -1
e>™B(S,S,11)7t = G TMC,.

e Essential monodromy data Sy, S1, B, Gy, L, D.

System is (strongly) isomonodromic on D(u°) if the above data are constant.

Note: Sp,S; are enough. Sy, 1 = e 27VBS, 2™VE Soy = e 27VBS 27 VB,
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Theorem 1. System strongly isomonodromic in D(u®) <= Y, for every v, and y(©),
satisfy the Frobenius integrable Pfaffian system

dY =w(z,u)Y, w(z,u) = (/\(u) + A(u)) dz + Xn:(zEk + wk(u)) duy,

z k=1

= (A0

uj — uj

Equivalently, strongly isomonodromic <> A satisfies the isomonodromy deformation
equations

dA = zn:[wk(u),A] dug.

j=t

Remark. The above theorem is analogous to the characterisation of isomonodromic
deformations by Jimbo-Miwa-Ueno, including also possible resonances in A
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Deformations in D(u¢), and u© is a coalescence point

% - (/\(u) + @) v,

A =D(u)N (U{u,— —uj = 0}) # 0  there are coalescence points.
i#j

Jimbo-Miwa-Ueno theory cannot be applied.

@ A fundamental matrix solution Y'(z, u) is holomorphic on R((C\{O} X ]D)(uc)\A),

but A is branching locus and Y(z, u) may diverge along any direction
approaching A.

@ In general, monodromy data for fundamental mat. solutions Y(z) of

Y A(uc
v (/\(uc) + ﬂ) Y, restricted at u = u€
dz z

are expected to be different from those of any fundamental solution Y(z, u) at
point u & A.

@ Fj(u) in formal solution have poles at A.

@ Serious problems with definition of asymptotics and Stokes sectors (see below)
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e Stokes rays of A(u€)
R((uf —up)z) =0, S((uf — ug)z) <O0.
Admissible direction at u¢ arg z = T not containing the above Stokes rays.

c c c R(z(u —uf)) =0
u$ = u$ # uf, b

mod 7

R(2(ui —up)) =0
R(z(u; = uj)) =0

e Even if D(u€) is small, as u varies
some Stokes rays of A(u)

R(z(uy

R((uj—uk)z) =0, S((uj—uk)z) < 0.

cross directions arg z = 7 mod .

“Crossing locus” X (7) = {u € D(u°) such that Stokes rays of A(u) have directions
argz =17 mod 7}.

A /| Polidisc D(u) D(u®)\(A U X(7)) is not connected.
= Coalescence locus A
JAyEaT: ~ A simply connected component is a
L - topological cell (7-cells).
X(T)
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Anyhow, isomonodromic deformations can be defined in polydisc D(u°)
contained in a 7-cell

Polidisc D(u®)
Coalescence locus A

Crossing locus X (7)

Extension of isomonodromic deformations to the whole D(u€).

Theorem. [Cotti, Dubrovin, DG: Duke Math. J., 168, (2019).] Assume that:
1. A(u) is holomorphic in D(u®),

2. Strong isomonoromy in D(u?),

3. AU(U) = O(U,‘ — Uj) — 0

Then:

e Fundamental matrix solutions are holomorphic in R(C\{0}) x D(u).
A is not a branching locus.

Davide
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e Asymptotic relations still hold on the whole D(u®) in wide u-independent sectors S,

Yo(z,u) ~ Ye(z,u), z— o0, ué€D(u),

!;,-_ .
P s

S: (t+w—-1rm) -8 <argz< (r+vm)+6 0

& >0, veLZ.

e The essential monodromy data Sy, S1, B, Co, L, D are well defined and constant on
the whole D(u®).

It suffices to compute the data for fundamental matrix solutions Y, (z) ~ Yg(z, u®)
and Y©)(z) of

dYy

L (/\(u‘)—‘r

A(u®)

) Y, restricted at u = u®
z

e Stokes matrices satisfy

(8v)ij = (Sv)ji = 0 for every i # j such that uf = uf.
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Notice that diagonal entries Aj; are constant.
Proposition.[Cotti, Dubrovin, Guzzetti (2019).] If

Aji — Ajj & Z\{0} corresponding to uf = ujc

then (DS|yc) below only has the formal solutionYg(z) = Yg(z, u®).
Thus, in order to compute the essential monodromy data of

(0s)  ZL = (Mw) + 2

it suffices to compute the essential monodromy data of

ﬂ = (A(u€) + A(u)

DS| e
(DS]ue) dz z

)Y.

Important conclusion:

o This result justifies computation of essential monodromy data on the whole D(u€)
starting from the system at u°.

o It gives efficient tool for possibly explicit computations, because (DS|,c) is simpler
that (DS). Indeed, A(u) has some vanishing entries:

(A(uc))ij = 0 wheneveruf = uf

e In order to do computations, we just need to know A(u¢). This occurs for example
in Quantum Cohomology.
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Two proofs.

The one in Cotti, Dubrovin, DG (2019) is based on the study of the Stokes
phenomenon and u-analytic continuation of fundamental solutions Y, (z, u) (a
strategy similar to Sibuya's).

The second proof in DG: Lett. Math. Phys (2021) uses the isomonodromic Laplace
transform (see also Galkin, Golyshev, Iritani: Duke Math. J (2016) for a particular case and part

of the statement on analyticity of solutions).

If no parameters: A = A(u°), A = A(u), u° fixed.

dz Laplace Y(z) = f,y e W(A)dA, dx S ul

if v is such that eAZ(A — /\)\I_;()\)’ = 0.
vy

By = —Ex(A+ ).

e Balser-Jurkat-Lutz. SIAM J. Math Anal. 12 (1981) (generic case, diag(A) with no
integers)
e R. Schifke (1980-'98) e Boalch, P. (2005) e Dubrovin (1996-2004)

e DG: Funkcial. Ekvac. 59 (2016) (general case, any A).

We introduce deformation parameters in this picture.
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A Fuchsian system

", Bi(u)

ala
>/‘€

vV,  Bi(u) = —Ex(A(u) + 1),
A — ug
k=1

is strongly isomonodromic in D(u®) (constant Levelt exponents, constant connection

matrices = constant monodromy matrices) if and only if it is the A-component of a
Frobenius integrable Pfaffian system

n
dw = P(\, u)V, P(z,u)=>
k=1

By (u)
A — uy

d(X— ug) + Zwk(u)duk.
k=1

L. Schlesinger...
A.A.Bolibrukh: lzv. Akad. Nauk SSSR Ser. Mat. 41 (1997),
A.A.Bolibrukh: J. of Dynamical Control Systems, 3, (1998).
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The integrability condition dP = P A P is the non-normalized Schlesinger system

0ivk — Oki = YiVk — VKVis (3)
B;, B .
0,8, = L ”+[,,Bk1 £k (4)
B, B
0iBj = — Z 7[ d + [, Bi (5)
i Ui T Uk

] recell | ZS00! Polydise Do)

Lemma [Harnad, Boalch, DG, ...

The Schlesinger equations (3)-(5) are equivalent to »
the isomonodromy deformation equations Lreet | e | Polydise B(u

dA = [wj(u), A] du;

j=t

of the irregular system —z (/\( ) + 4 ) Y

if and only if
() =wi(u), =10
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Extension to coalescences.

Lemma [DG] Assume that A(u) is holomorphic on the whole D(u€).

Then, the Pfaffian system

dV =P\ UV,  Plzyu) =3 fi(“) AN = u) + > e(u)duy.
k=1 Uik k=1

is Frobenius integrable on the whole D(u®) with holomorphic matrix coefficients

if and only if

(A(“)),j —0, <= [Bj(u),Bj(u)] — 0,  whenever u; — u; — 0 in D(u®).
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P

For each u € D(u®), consider in A-plane
branch-cuts L1 = Li(n), ..., Ln = La(n)

issuing from w1, ..., up with direction

n:=3w/2 —T,

Sheet

Pn(u) = {)\ € R(C\{u1, ..,un}) | n—2n <argA—u) <m, 1<k< n}.
We define the domain

D= |J ){(A,u) | A eP,,(u)}

ueD(uc

Note. D(u€) is “sufficiently” small...
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Theorem.[DG: Letters in Math. Phys. (2021)]

The Frobenius integrable

d(A— k) + > we(u)dug,
k=1

Bj(u) = —Ej(A(u) + 1),

dv = P()\7 u)\l!, P(z7 u) =

with
(A(u)),.j — 0, for uj — uj — 0 in D(uc).

has selected vector solutions

\|71(>\, uln), ..., \I_},,(/\, u|n)  holomorphic on D,
and singular solutions with regular singularity at A = uy, ..., up,
\I_}§Si"g)()\, uln), ..., \T/(,,s"”g)()\, u|n)  holomorphic on D.

They are extracted from a suitable combination of columns of a class of fundamental
matrix solutions of the Pfaffian system. This class follows from results of
Yoshida-Takano (1976) and Bolibruch (1977).
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Connection coefficients cjy.

—

Vi) = U0 u ) g +regA—u),  AEP,

cj(k") :=0,Vk =1,...,n, when ‘J_}J(.Si"g) =0, possibly for Aj € —N — 2.

The cjc's are uniquely defined, for uniqueness of the singular behaviour of U7§Si"g)

(but \Tf}(s""g) is not uniquely def. if A € Z_ ).

Corollary of Theorem. They are isomonodromic connection coefficients, independent
of u € D(u). They satisfy the vanishing relations

ck =0  for j # k such that uj = uj.
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Use selected and singular solutions in a suitable Laplace transform to re-obtain
results for irregular system

For v € 7Z we define:

v 1 7 (sin,

Yi(z,u |v) = —/ eZ)‘\Ilis ‘:”)()\7 u |n —vm)dX, for Aik € Z—,  (6)
2mi Sy (n—vr)

Yi(z,u |v) = / e (A u | — v)dA, for Ak e Z—. (7)
Ly(n—vm)

Yo (z,u) = [\71(2, u|v) ) ’ Ya(z,u |u)], fixed u € 7-cell, 7 =37/2 — 7,
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Theorem.[DG. Lett.Math.Phys. 2021]

Davide

The Y, (z,u), define by Laplace transf. above, are

holomorphic in (A, u) € R(C\{0}) x D(uc).

They are the fundamental matrix solutions of j—y = (/\(u) + M) Y, with the
r4 z

required asymptotics.

They satisfy all the properties stated in the theorem of Cotti, Dubrovin, DG (‘19)
mentioned before.

In particular, the Stokes matrices defined by
Yu+1(zz u) = Yu(zz U)Sua
e are constant in the whole D(u®),

e the S, are explicitly expressed in terms of isomonodr. connection coefficients:
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Let

ay = (¥ — 1), if Ay & Z; ay = 2mwi, if A € Z,
Then: .
Moy ek, J =k, uf # uf,
1 j=k
(So)jk =
! 0 Jom ok uf # o,
0 Jj#k, ujC = ug,
0 Jj#k, ujc = ug,
) 0 j =<k, uJ‘? # ug,
(51 )ik =
H 1 j=k,
,ezwi(Akkajj)ak Gk ik, ujc # ug,
S2y+1 — e—27'riuBgle27riuB7 S2IJ — e—27ri1/BSOe27riuB
Therefore
(Sv)jx = (Su) =0  for j # k such that uf = ug.
Relation j < k, for u¢ # uf, means R(z(u¢ — uf)) < 0.
J k J k arg z=T1
Davide Guzzetti A, lrieste, Italy =



See also
Sabbah C.: arXiv:2103.16878 (2021)

Sabbah’s talk in November at online seminar in Kobe
(middle extension, another viewpoint for our Laplace Transform).

For the inverse problem (Riemann-Hilbert problem) in presence of coalescences,
generalizing results of Malgrange: existence of an integrable deformation of a given
connection at a coalescence point.

Sabbah C.: Publ. RIMS Kyoto Univ. 57, n. 3-4, (2021)

Cotti G.: Lett. Math. Phys. 111 (2021)

Cotti G.: arXiv:2105.06329 (2021)

Davide Guzzetti A, Irieste, Italy



Example of Frobenius manifolds

Recall that canonical coordinates u = (uy, ..., un) coalesce (i.e. u; — u; — 0 for some
i # j) along a locus which in general has a semisimple component (Maxwell stratum)
and a non semisimple one called Caustic (see Hertling’s book on Frobenius and F
manifolds).

Proposition: [Cotti, Dubrovin, DG: SIGMA 16 (2020)] If a Frobenius manifold remains
semisimple at a coalescence point u = u® of the canonical coordinates u = (ux, ..., un),
then the coefficients of the flat connection w are such that:

o A(u) is holomorphic at u¢

@ and Aj;(u°) — 0.

We can apply previous results: we can compute monodromy data on a chart from the
only knowledge of A(uc).

For some important Frobenius manifolds the manifold structure is explicitly known
only at coalescence points u€.
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Example: Frobenius structure on quantum cohomology of Grassmannians
QH*(G(k, )

(it is a deformation of the classical cohomology. No details, no definitions...).

We explicitly know the linear system only at the locus of small cohomology. This is a
coalescence locus for almost all Grassmannians [Cotti G.: Int. Math. Res. Not.
IMRN, 10.1093/imrn/rnaal63, (2020)].

We can apply our theorem on coalescences. Thus, the manifold structure can be

reconstructed (in principle) from the monodromy data computed at a coalescence
point.

o Simplest example: For QH®*(G(2,4)). n=6.

A(uE) = 4\f2~diag(—1, —i,0,0,i,1) <— coalescence

A(uc) is explicitly known and (A(u€))3s = (A(u€))a3 = 0.
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Computations of Sg, Si, C can be explicitly done. Indeed, the system at u = u¢
reduces to a generalised hypergeometric equation.

Up to some admissible transformations (including action of braid group) we obtain

1 4 10 6 20 20

0 1 4 4 16 20

_ 00 1 0 4 10
S'=100 0 1 4 6 |° Sw=Ss=0

00 0 0 1 4

00 0 0 0 1

We have also computed C explicitly (too long to write here, see Cotti, Dubrovin, DG:
SIGMA 16 (2020)).
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Explicit computation of monodromy data allows to verify or refine conjectures [Dubrovin at ICM
1998, Strasburg 2013; Gamma-conjecture Galkin-Golyshev-Iritani] prescribing an explicit
coincidence between the monodromy data of quantum cohomology of smooth projective varieties
and suitable quantities associated with objects of exceptional collections in derived categories of
coherent sheaves on these varieties.

Results of this talk allows to justify the theory, which is based on only knowledge at colaescence
points.

If true, these conjectures would allow to obtain monodromy data in algebraic way (and then
analytic continuation of Frobenius manifolds), avoiding problems of analytic computations.

Let X be a Fano manifold. The Frobenius manifold QH®(X) is semisimple iff there exists a full
exceptional collection (Ei, ..., E,) in D?(X). Moreover:
— the (inverse of the) Stokes matrix S is equal to the inverse of the Gram matrix of the
Euler-Poincaré-Grothendieck product x(E;j, E;);
— the columns of the connection matrix C coincide with the components of the forms
i imey (X)

— 7171'61 :

2ﬂ_d/zl’ (X)ue U Ch(Ej),

where
rX)= H M1 — ar), ays Chern roots of TX.
14
d = dim(X), d = dim(X) mod 2.

For Projective spaces [Guzzetti 1999].
For all Grassmannians [Cotti-Dubrovin-D.G arXiv "18. SIGMA '19], [Galkin-Golyshev-Iritani: Duke
Math. J. '16].
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Application of “semisimple” coalescences to PVI.

d? 11 1 1 dy\? 1 1 1 1d

Yo —+ I + z

dx2 2|y y—-1  y—x] \dx x x—1 y—x]dx
X x—1 x(x —1)

a+pf— +v +4 :|,

{ y2 o (y—=12 (v —x)?

-1 — X
R

Consider a Frobenius integrable Pfaffian system of the type introduced before

A(u)

3
dY =w(z,u)Y, w(z,u) = (/\ + T) dz + Z(ZEk + wi(u))du,
k=1

Aii (i —3jk)
uj—uj

A = diag(ur, uz, u3), wi(u) = <

Suppose that:

diagA = diag(—01, —62, —63),

)

A has distinct eigenvalues = 0, > s 2

Davide Guzzetti A, lrieste, Italy
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ij=1"

Ooc =01 — 02— 03 —0oc — 01 — 62 — 03



Theorem [Harnad (1994) = Mazzocco (2002), Boalch (2004)] The integrability is
equivalent to PVI with parameters

28 =—02, 26=1-03, 2y=603 2a=(0—1)2

Theorem [Mazzocco (2002); Degano & DG: arXiv:2108.07003 (2021)]. There is a
one-to-one correspondence between transcendents y(x) and equivalence classes

{KO-A- (KO, KO = diag(kf, K8,1), (K, K9) € C2\{0,0}}
of solutions of isomonodromic deformation equations, with explicit formulae
upy —

A(u) = (us = 1)® Q(x) (us — 1) "©,  © = diag(61,6,65), x=—"— L.
3 — u1
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dy
2 2
ka(x) (- X)E + (0o —1L)y" + (92 —01+1— (0o + 92)><)y + 01x

Qpp =
? k() 2(x — 1)y ’
d
ka(x) (x* — x)d—i + (0o — 1)y2 + (01 — 0+ 1— (0o — 6’2)X)y — 01x
Qo = . .
) 2(x—y)
d
(x — xz)d—y +(1— 000y + ((01 — 03)x + 0o + 03 — l)y — O1x
Q3 =ki(x) - X )
2(x — 1)y
d
1 =T (= 0u)y? + (63— 02)x+ 00 — 03— 1)y + 01
Qo =—— .
T ) 2x(y — 1) '
d
(x — x2)d—i +(1—00)y” + ((00o — 02)x + 00 + 03 — l)y = x(0o0 — 02 + 03)
Qo3 =ko(x) -
¢ 2(x —y)
d
L (x— xz)d—i (1= 000)y? + ((Boo + 02)x + 000 — 65 — 1)y — x(Boo + 62 — 63)
Qi =——— -
2 T () 2x(1 — y)
and diag Q = diag V = diag(—601, —602, —63). The functions k;(x) are obtained by
quadratures....

Coalescence u; — uj — 0 <= Singularities of PVl x — 0, 1, co.

Davide Guzzetti A, lrieste, Italy
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PVl is “traditionally” seen as the isomonodromy deformation equations (Schlesinger
equations), of

2 x 2 isomonodromic Fuchsian, (% * %)

3
eigenvalues of A, = i%, Z'Ak _ (*980/2 ) 0/2)
oo
k=1

Solving PVI....
The integration constants parameterizing the three singular behaviours at x = 0,1, co
of a PVI-transcendent are funcions of the same traces

pik = tr(MMy), 1<j#k<3,

where pjc = pij and My, My, M3z € SL(2,C) are the monodromy matrices of a
fundamental matrix solution of (x * ).

— Solution of non-linear connection problem of PVI [Jimbo (1982), and several
other works afterwards] .
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n

Recall:
dv

dy A B
(x) — = (A+ —) Y L . —_ k
dz z Laplace Y(z) = fV eMW(N\)d), A k=1 A-u

W (k)

=}

Since By = —Ex(A+ 1), the 3 X 3 Fuchsian system (xx) can be reduced to a 2 x 2
Fuchsian system

associated with PVI (modulo a gauge transformation).

Theorem [Degano & DG: arXiv:2108.07003 (2021)]. The traces pj = tr(M;M,) for
(s % %) are expressed in terms of the Stokes matrices of the 3 X 3 irregular system (x):

2cos (0 — 0x) — ™m0 (So)u (ST )y, S <k,
pjk = _
2cos (0 — 0k) — e ™09 (S0) (ST ik s = k-

This holds also in case of coalescences:

pjk = 2cosm(68; — Ox)  for j # k such that ujc = uf.
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Recall: Coalescence u; — u;j — 0 <= Singularities of PVI x — 0,1, c0

(For example up — uy — 0 is x — 0)

In Degano & DG: arXiv:2108.07003, we classify branches of transcendents such that

Ajj(u) = O(uj — uj) — 0 holomorphically, whenever u; — u; — 0 approaching A.

They are a sub-class of the class of transcendents with a holomorphic branch at a
singular point x =0, or 1 or co of PVI.

= The results of Cotti, Dubrovin, DG: Duke Math. J., 168, (2019) on coalescence
can be applied, so that we can explicitly compute the associated Stokes matrices
So,S1 only using
dY
dz

= (/\(uf) + @) Y at u = u°.

Consequently, we can compute the pj = tr(M;My).

In particular: computation of the monodormy data parametrizing the chamber of a
3-dim Dubrovin-Frobenius manifold associated with a branch of a transcendent
holomorphic at a singular point of PVI.
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