Confluent approach to Fifth Painlevé equation

Martin Klimeš

FER, University of Zagreb

Painlevé seminar, May 13, 2021

Klimeš, M., Wild Monodromy of the Fifth Painlevé Equation and its Action on Wild Character Variety: An Approach of Confluence, arXiv:1609.05185

Confluence

$$P_{III}^{D_6} \rightarrow P_{III}^{D_7} \rightarrow P_{III}^{D_8}$$

$$\nearrow \qquad \qquad \searrow \qquad \qquad \qquad \nearrow$$

$$P_{VI} \rightarrow P_{V} \rightarrow P_{V}^{deg} \qquad P_{II}^{JM} \rightarrow P_{I}$$

$$\searrow \qquad \qquad \searrow \qquad \nearrow$$

$$P_{IV} \rightarrow P_{II}^{FN}$$

[Ohyama, Okumura (2006), Chekhov, Mazzocco, Roubtsov (2017)]

Goal: transfer knowledge along the diagram

(a) Painlevé equations

Problem: divergence on both sides of the Riemann-Hilbert correspondence

(b) Isomonodromic deformations

Nonlinear Monodromy

Okamoto-Painlevé system:

$$P_J: \frac{dq}{dt} = \frac{\partial H_J(q, p, t)}{\partial p}, \qquad \frac{dp}{dt} = -\frac{\partial H_J(q, p, t)}{\partial q}, \qquad J = I, \dots, VI,$$

leaves are transverse to the fibration $(q, p, t) \mapsto t$.

Okamoto's completion of the phase space:

- 1. leaves transverse to each fiber $\mathcal{M}_{J,t}=\mathit{Okamoto's}$ space of initial conditions, endowed with the symplectic form $\omega=\mathit{dq}\wedge\mathit{dp}$,
- 2. Geometric Painlevé property: every leaf is a covering of $\mathbb{CP}^1 \setminus \mathrm{Sing}(P_J)$.

Nonlinear Monodromy

Okamoto-Painlevé system:

$$P_J: \quad \frac{dq}{dt} = \frac{\partial H_J(q, p, t)}{\partial p}, \qquad \frac{dp}{dt} = -\frac{\partial H_J(q, p, t)}{\partial q}, \qquad J = I, \dots, VI,$$

leaves are transverse to the fibration $(q, p, t) \mapsto t$.

Okamoto's completion of the phase space:

- 1. leaves transverse to each fiber $\mathcal{M}_{J,t}=\mathit{Okamoto's}$ space of initial conditions, endowed with the symplectic form $\omega=\mathit{dq}\wedge\mathit{dp}$,
- 2. Geometric Painlevé property: every leaf is a covering of $\mathbb{CP}^1 \setminus \mathrm{Sing}(P_J)$

Monodromy (nonlinear):

$$\pi_1(\mathbb{CP}^1 \setminus \operatorname{Sing}(P_J), t_0) \to \operatorname{Aut}_{\omega}(\mathcal{M}_{J,t_0})$$

P_{VI} : Sing $(P_{VI}) = \{0, 1, \infty\}$

- ► represented by explicit algebraic action of a braid group on a character variety [Dubrovin, Mazzocco (2000), Iwasaki (2002)]
- ▶ algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin, Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]
- ▶ monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]

- P_{VI} : Sing $(P_{VI}) = \{0, 1, \infty\}$
 - ► represented by explicit algebraic action of a braid group on a character variety [Dubrovin, Mazzocco (2000), Iwasaki (2002)]
 - algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin, Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]
 - ▶ monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]

 P_1, \ldots, P_V : missing information – hidden in a *nonlinear Stokes phenomenon* at the irregular singularities

- P_{VI} : Sing $(P_{VI}) = \{0, 1, \infty\}$
 - ► represented by explicit algebraic action of a braid group on a character variety [Dubrovin, Mazzocco (2000), Iwasaki (2002)]
 - ▶ algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin, Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]
 - ▶ monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]

 P_1, \dots, P_V : missing information – hidden in a *nonlinear Stokes phenomenon* at the irregular singularities

Conjecture (Ramis (2012))

- 1. Painlevé property extends to "wild Painlevé property" (Ecalle's resurgence?) and monodromy extends to a "wild monodromy" (nonlinear Stokes phenomenon at irregular singularities),
- 2. Galoisian significance of the wild monodromy (Malgrange-Galois pseudogroup),
- 3. Riemann-Hilbert correspondence algebrizes everything (wild monodromy dynamics on wild character variety is rational and depends rationally on the parameters).

Non-linear Stokes phenomenon of P_V

The Okamoto–Painlevé system of (non-degenerate) P_V near $(q, p, t) = (0, 0, \infty)$:

(*)
$$P_V: \quad x^2 \frac{dq}{dx} = -\frac{\partial H_V(q,p,x^{-1})}{\partial p}, \qquad x^2 \frac{dp}{dx} = \frac{\partial H_V(q,p,x^{-1})}{\partial q}, \qquad x = t^{-1}$$

Theorem (Takano (1983), Shimomura (1983))

There exists a pair of sectorial transversely symplectic transformations $\left(\begin{smallmatrix} q \\ p \end{smallmatrix}\right) = \Psi^{\bullet}(u,x), \ |u| < \delta, \ x \in \mathsf{X}^{\bullet},$

ullet = ullet, ullet, bringing (*) to a formal normal form

$$x^2 \frac{d}{dx} u = \left(1 - (2\vartheta_0 + \tilde{\vartheta}_1 - 1)x + 4x u_1 u_2\right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} u.$$

Non-linear Stokes phenomenon of P_V

The Okamoto-Painlevé system of (non-degenerate) P_V near $(q, p, t) = (0, 0, \infty)$:

(*)
$$P_V: \quad x^2 \frac{dq}{dx} = -\frac{\partial H_V(q,p,x^{-1})}{\partial p}, \qquad x^2 \frac{dp}{dx} = \frac{\partial H_V(q,p,x^{-1})}{\partial q}, \qquad x = t^{-1}$$

Theorem (Takano (1983), Shimomura (1983))

There exists a pair of sectorial transversely symplectic transformations $\begin{pmatrix} q \\ p \end{pmatrix} = \Psi^{\bullet}(u, x), \ |u| < \delta, \ x \in X^{\bullet},$

 $\bullet = \bullet, \bullet$, bringing (*) to a formal normal form

$$x^2 \frac{d}{dx} u = \left(1 - \left(2\vartheta_0 + \tilde{\vartheta}_1 - 1\right)x + 4x u_1 u_2\right) \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} u.$$

Canonical 2-parameter family of solutions

$$\begin{pmatrix} q^{\bullet} \\ \rho^{\bullet} \end{pmatrix}(x;c) = \Psi^{\bullet}(\cdot,x) \circ u^{\bullet}(x;c), \qquad u^{\bullet}(x;c) = \begin{pmatrix} c_{1} e^{-\frac{1}{x}} x^{-(2\vartheta_{0}+\bar{\vartheta}_{1}-1)+4c_{1}c_{2}}, \\ c_{2} e^{\frac{1}{x}} x^{(2\vartheta_{0}+\bar{\vartheta}_{1}-1)-4c_{1}c_{2}} \end{pmatrix},$$

 $c \in (\mathbb{C}^2,0)$... local coordinate on the space of leaves over X^ullet , ullet = ullet , ullet

c = 0: sectorial center manifold solution (pole-free on X^{\bullet}).

Nonlinear wild monodromy pseudogroup of P_V

Acts locally on leaves. Generated by:

Exponential torus: commutative Lie group of analytic symplectic symmetries
of the formal normal form

$$\boldsymbol{\mathcal{T}}_{\alpha}(\boldsymbol{c}) = \begin{pmatrix} e^{\alpha(c_{1}c_{2})}c_{1} \\ e^{-\alpha(c_{1}c_{2})}c_{2} \end{pmatrix}, \qquad \alpha \in \mathcal{O}(\mathbb{C},0),$$

Formal monodromy $u^{\bullet}(e^{2\pi i}x;c) = u^{\bullet}(x;\mathbf{N}(c)),$

$$N(c) = T_{2\pi i(-2\vartheta_0 - \tilde{\vartheta}_1 + 4c_1c_2)}(c),$$

Nonlinear wild monodromy pseudogroup of P_V

Acts locally on leaves. Generated by:

 Exponential torus: commutative Lie group of analytic symplectic symmetries of the formal normal form

$${m T}_{lpha}({m c}) = \left(egin{array}{c} e^{lpha({f c}_1{f c}_2)}c_1 \ e^{-lpha({f c}_1{f c}_2)}c_2 \end{array}
ight), \qquad lpha \in \mathcal O(\mathbb C,0),$$

Formal monodromy $u^{\bullet}(e^{2\pi i}x;c) = u^{\bullet}(x; N(c)),$

$$N(c) = T_{2\pi i(-2\vartheta_0 - \tilde{\vartheta}_1 + 4c_1c_2)}(c),$$

Stokes operators:

$$\begin{pmatrix} {}_{p} \overset{\bullet}{\smile} \end{pmatrix} (x;c) = \begin{pmatrix} {}_{p} \overset{\bullet}{\smile} \end{pmatrix} (x; \boldsymbol{S}_{1} \circ \boldsymbol{N}(c)), \qquad x \in X_{1}^{\cap},$$

$$\begin{pmatrix} {}_{p} \overset{\bullet}{\smile} \end{pmatrix} (x;c) = \begin{pmatrix} {}_{p} \overset{\bullet}{\smile} \end{pmatrix} (x; \boldsymbol{S}_{2}(c)), \qquad x \in X_{2}^{\cap}.$$

Nonlinear wild monodromy pseudogroup of P_V

Acts locally on leaves. Generated by:

 Exponential torus: commutative Lie group of analytic symplectic symmetries of the formal normal form

$${m T}_{lpha}({m c}) = \left(egin{array}{c} {
m e}^{lpha({f c}_1{f c}_2)} {
m c}_{{f c}} \ {
m e}^{-lpha({f c}_1{f c}_2)} {
m c}_{{f c}_2} \end{array}
ight), \qquad lpha \in \mathcal O(\mathbb C,0),$$

Formal monodromy $u^{\bullet}(e^{2\pi i}x;c)=u^{\bullet}(x;\mathbf{N}(c)),$

$$N(c) = T_{2\pi i(-2\vartheta_0 - \tilde{\vartheta}_1 + 4c_1c_2)}(c),$$

► Stokes operators:

$$\begin{pmatrix} {}_{p}^{\bullet} \\ {}_{p}^{\bullet} \end{pmatrix}(x;c) = \begin{pmatrix} {}_{p}^{\bullet} \\ {}_{p}^{\bullet} \end{pmatrix}(x;S_{1} \circ N(c)), \qquad x \in X_{1}^{\cap},$$
$$\begin{pmatrix} {}_{p}^{\bullet} \\ {}_{p}^{\bullet} \end{pmatrix}(x;c) = \begin{pmatrix} {}_{p}^{\bullet} \\ {}_{p}^{\bullet} \end{pmatrix}(x;S_{2}(c)), \qquad x \in X_{2}^{\cap}.$$

► Monodromy:

$$\binom{q^{\bullet}}{q^{\bullet}}(e^{2\pi i}x;c)=\binom{q^{\bullet}}{q^{\bullet}}(x;M^{\bullet}(c)),\qquad M^{\bullet}(c)=S_2\circ S_1\circ N(c),$$

The confluence $P_{VI} \rightarrow P_{V}$

$$t_{V\!I} = 1 + \epsilon t_V, \qquad \vartheta_{t,V\!I} = \tfrac{1}{\epsilon}, \quad \vartheta_{1,V\!I} = -\tfrac{1}{\epsilon} + \tilde{\vartheta}_{1,V}, \quad x = \tfrac{1}{t_V} + \epsilon.$$

Confluent system:

$$(*) x(x-\epsilon)\frac{dq}{dx} = -\frac{\partial H(q,p,x,\epsilon)}{\partial p}, x(x-\epsilon)\frac{dp}{dx} = \frac{\partial H(q,p,x,\epsilon)}{\partial q}.$$

Theorem (K. (2016))

There exist "sectorial" transversely symplectic transformations $\binom{q}{p} = \Psi_{\pm}^{\bullet}(u, x, \epsilon)$ on a parametric family of domains $|u| < \delta$, $x \in X_{\pm}^{\bullet}(\epsilon)$, $\epsilon \in E_{\pm}$, $\bullet = \blacktriangle$, \blacksquare , bringing (*) to a confluent formal normal form

$$x(x-\epsilon)\frac{\mathit{d} \mathit{u}}{\mathit{d} \mathit{x}} = \Big(1-\epsilon-(x-\epsilon)\vartheta_0 - x(\vartheta_0+\tilde{\vartheta}_1-1) + 2(2x-\epsilon)\mathit{u}_1\mathit{u}_2\Big)\Big(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\Big)\,\mathit{u}.$$

The confluence $P_{VI} \rightarrow P_{V}$

$$t_{VI} = 1 + \epsilon t_V, \qquad \vartheta_{t,VI} = \frac{1}{\epsilon}, \quad \vartheta_{1,VI} = -\frac{1}{\epsilon} + \tilde{\vartheta}_{1,V}, \quad x = \frac{1}{t_V} + \epsilon.$$

Confluent system:

$$(*) x(x-\epsilon)\frac{dq}{dx} = -\frac{\partial H(q,p,x,\epsilon)}{\partial p}, x(x-\epsilon)\frac{dp}{dx} = \frac{\partial H(q,p,x,\epsilon)}{\partial q}.$$

Theorem (K. (2016))

There exist "sectorial" transversely symplectic transformations $\binom{q}{p} = \Psi_{\pm}^{\bullet}(u, x, \epsilon)$ on a parametric family of domains $|u| < \delta$, $x \in X_{\pm}^{\bullet}(\epsilon)$, $\epsilon \in E_{\pm}$, $\bullet = \blacktriangle, \blacktriangledown$, bringing (*) to a confluent formal normal form

$$x(x-\epsilon)\frac{\mathit{d} \mathit{u}}{\mathit{d} \mathit{x}} = \Big(1-\epsilon-(x-\epsilon)\vartheta_0 - x(\vartheta_0+\tilde{\vartheta}_1-1) + 2(2x-\epsilon)\mathit{u}_1\mathit{u}_2\Big)\Big(\begin{smallmatrix} 1 & 0 \\ 0 & -1 \end{smallmatrix}\Big) \,\mathit{u}.$$

Canonical 2-parameter family of solutions: $\binom{q_{\pm}^{\bullet}}{p_{\pm}^{\bullet}}(x,\epsilon;c) = \Psi_{\pm}^{\bullet}(\cdot,x,\epsilon) \circ u_{\pm}^{\bullet}(x,\epsilon;c),$ where

$$u_{\pm}^{\bullet}(x,\epsilon;c) = \begin{pmatrix} c_1 E \\ c_2 E^{-1} \end{pmatrix}, \quad E(x,\epsilon;c_1c_2) = \begin{cases} x^{-\frac{1}{\epsilon}+1-\vartheta_0+2c_1c_2}(x-\epsilon)^{\frac{1}{\epsilon}-1-\vartheta_0-\tilde{\vartheta}_1+2c_1c_2}, \\ e^{-\frac{1}{x}}x^{-2\vartheta_0-\tilde{\vartheta}_1-1+4c_2c_2}, \quad \epsilon = 0. \end{cases}$$

 $c \in (\mathbb{C}^2,0)$...local coordinate on the space of leaves over X_\pm^ullet .

$$c = 0$$
: special solution (pole-free on X_{\pm}^{\bullet}).

Unfolded Stokes operators ${\pmb S}_{1,\pm},\ {\pmb S}_{2,\pm},$ formal monodromy ${\pmb N}_0,\ {\pmb N}_\varepsilon,\ {\pmb N}.$

Decomposition of monodromy

For $\epsilon \in E_+ \setminus \{0\}$, $x_0 \in X_+^{\bullet}$, the *monodromy* around x = 0 and $x = \epsilon$ decomposes as:

$$\textit{M}_{0,+}^{ \bullet} = \textit{N}_{\epsilon}^{\circ (-1)} \circ \textit{S}_{1,+} \circ \textit{N}, \qquad \qquad \textit{M}_{\epsilon,+}^{ \bullet} = \textit{S}_{2,+} \circ \textit{N}_{\epsilon},$$

where the *unfolded Stokes operators* $\boldsymbol{S}_{i,\pm}(c,\epsilon)$ tend to the non-linear Stokes operators $\boldsymbol{S}_{i}(c,0)$ of P_{V} when $\epsilon \to 0$, and the *formal monodromies*

$$\mathbf{\textit{N}}_0(c,\epsilon) = \left(\begin{smallmatrix} e^{-\frac{2\pi i}{\epsilon} - 2\pi i(\vartheta_0 - 2c_1c_2)}c_1\\ e^{\frac{2\pi i}{\epsilon} + 2\pi i(\vartheta_0 - 2c_1c_2)}c_2 \end{smallmatrix}\right), \qquad \mathbf{\textit{N}}_\epsilon(c,\epsilon) = \left(\begin{smallmatrix} e^{\frac{2\pi i}{\epsilon} - 2\pi i(\vartheta_0 + \tilde{\vartheta}_1 - 2c_1c_2)}c_1\\ e^{-\frac{2\pi i}{\epsilon} + 2\pi i(\vartheta_0 + \tilde{\vartheta}_1 - 2c_1c_2)}c_2 \end{smallmatrix}\right),$$

belong to the exponential torus.

Accumulation of monodromy

Discretization along sequences $\{\epsilon_n\}_{n\in\pm\mathbb{N}}\subset\mathsf{E}_\pm\!\setminus\!\{0\}$

$$\frac{1}{\epsilon_n} = \frac{1}{\epsilon_0} + n$$
, s.t. $\kappa := e^{\frac{2\pi i}{\epsilon}} \in \mathbb{C}^*$ is constant.

Accumulation to a 1-parameter family depending on κ of wild monodromy operators

$$egin{aligned} oldsymbol{\mathcal{M}}_{0,+}^oldsymbol{\wedge}(c,\epsilon_n) &
ightarrow ilde{oldsymbol{\mathcal{M}}}_{0,+}^oldsymbol{\wedge}(c;\kappa) = ilde{oldsymbol{\mathcal{N}}}_{\epsilon}(\cdot;\kappa)^{\circ(-1)} \circ oldsymbol{\mathcal{S}}_1 \circ oldsymbol{\mathcal{N}}(c), \ oldsymbol{\mathcal{M}}_{\epsilon,+}^oldsymbol{\wedge}(c,\epsilon_n) &
ightarrow ilde{oldsymbol{\mathcal{M}}}_{\epsilon,+}^oldsymbol{\wedge}(c;\kappa) = oldsymbol{\mathcal{S}}_2 \circ ilde{oldsymbol{\mathcal{N}}}_{\epsilon}(c;\kappa), \end{aligned}$$

where

$$\tilde{N}_0(c;\kappa) = \begin{pmatrix} \frac{1}{\kappa} e^{2\pi i(-\vartheta_0 + 2c_1c_2)} c_1 \\ \kappa e^{2\pi i(\vartheta_0 - 2c_1c_2)} c_2 \end{pmatrix}, \qquad \tilde{N}_{\epsilon}(c;\kappa) = \begin{pmatrix} \kappa e^{2\pi i(-\vartheta_0 - \tilde{\vartheta}_1 + 2c_1c_2)} c_1 \\ \frac{1}{\kappa} e^{2\pi i(\vartheta_0 + \tilde{\vartheta}_1 - 2c_1c_2)} c_2 \end{pmatrix},$$

and $\mathbf{N} = \tilde{\mathbf{N}}_0(\kappa) \circ \tilde{\mathbf{N}}_{\epsilon}(\kappa)$, are elements of the exponential torus.

Accumulation of monodromy

Discretization along sequences $\{\epsilon_n\}_{n\in\pm\mathbb{N}}\subset\mathsf{E}_\pm\!\setminus\!\{0\}$

$$\frac{1}{\epsilon_n} = \frac{1}{\epsilon_0} + n$$
, s.t. $\kappa := e^{\frac{2\pi i}{\epsilon}} \in \mathbb{C}^*$ is constant.

Accumulation to a 1-parameter family depending on κ of wild monodromy operators

$$egin{aligned} oldsymbol{M}_{0,+}^oldsymbol{\cap}(c,\epsilon_n) &
ightarrow ilde{oldsymbol{M}}_{0,+}^oldsymbol{\cap}(c;\kappa) = ilde{oldsymbol{N}}_{\epsilon}(\cdot;\kappa)^{\circ(-1)} \circ oldsymbol{S}_1 \circ oldsymbol{N}(c), \ oldsymbol{M}_{\epsilon,+}^oldsymbol{\cap}(c,\epsilon_n) &
ightarrow ilde{oldsymbol{M}}_{\epsilon,+}^oldsymbol{\cap}(c;\kappa) = oldsymbol{S}_2 \circ ilde{oldsymbol{N}}_{\epsilon}(c;\kappa), \end{aligned}$$

where

$$\tilde{\mathbf{N}}_0(\mathbf{c};\kappa) = \begin{pmatrix} \frac{1}{\kappa} e^{2\pi i (-\vartheta_0 + 2c_1c_2)} c_1 \\ \kappa e^{2\pi i (\vartheta_0 - 2c_1c_2)} c_2 \end{pmatrix}, \qquad \tilde{\mathbf{N}}_\epsilon(\mathbf{c};\kappa) = \begin{pmatrix} \kappa e^{2\pi i (-\vartheta_0 - \tilde{\vartheta}_1 + 2c_1c_2)} c_1 \\ \frac{1}{\kappa} e^{2\pi i (\vartheta_0 + \tilde{\vartheta}_1 - 2c_1c_2)} c_2 \end{pmatrix},$$

and $\mathbf{N} = \tilde{\mathbf{N}}_0(\kappa) \circ \tilde{\mathbf{N}}_{\epsilon}(\kappa)$, are elements of the exponential torus.

The Stokes operators can be now expressed e.g. as

$$\mathbf{N}^{\circ(-1)} \circ \mathbf{S}_1 \circ \mathbf{N}(c) = \tilde{\mathbf{M}}_{0,+}^{\bullet}(c;\kappa) \Big|_{\kappa = e^{2\pi i(-\vartheta_0 + 2c_1c_2)}}, \quad \mathbf{S}_2(c) = \tilde{\mathbf{M}}_{\epsilon,+}^{\bullet}(c;\kappa) \Big|_{e^{2\pi i(\vartheta_0 + \tilde{\vartheta}_1 - 2c_1c_2)}},$$

while the infinitesimal "generator" $(c_1\partial_{c_1}-c_2\partial_{c_2})$ of the exponential torus is given by

$$\dot{c} = - \left(\kappa \frac{d}{d\kappa} \tilde{\textit{M}}_{0,+}^{\spadesuit}(\cdot;\kappa) \right) \circ \left(\tilde{\textit{M}}_{0,+}^{\spadesuit}(c;\kappa) \right)^{\circ (-1)}.$$

Character variety of P_{VI}

Flat traceless meromorphic connection on the trivial bundle on \mathbb{CP}^1

$$\nabla_{VI} = d - \left[\frac{A_0(t)}{z} + \frac{A_t(t)}{z-t} + \frac{A_1(t)}{z-1} \right] dz + \frac{A_t(t)}{z-t} dt,$$

fixed parameters: $\pm \frac{\vartheta_l}{2}$... eigenvalues of the residue matrices A_l , $l=0,t,1,\infty$.

Character variety of P_{VI}

Flat traceless meromorphic connection on the trivial bundle on \mathbb{CP}^1

$$\nabla_{VI} = d - \left[\frac{A_0(t)}{z} + \frac{A_t(t)}{z-t} + \frac{A_1(t)}{z-1} \right] dz + \frac{A_t(t)}{z-t} dt,$$

fixed parameters: $\pm \frac{\vartheta_l}{2}$... eigenvalues of the residue matrices A_l , $l=0,t,1,\infty$.

(Linear) monodromy representation:

$$\rho: \pi_1(\mathbb{CP}^1 \setminus \{0, t, 1, \infty\}, z_0) \to \mathsf{SL}_2(\mathbb{C}),$$

$$ho(\gamma_l)=M_l,\ l=0,t,1,\infty,$$
 have eigenvalues $e_l=e^{\pi i\vartheta_l},\ e_l^{-1}.$

Character variety of P_{VI}

Flat traceless meromorphic connection on the trivial bundle on \mathbb{CP}^1

$$\nabla_{VI} = d - \left[\frac{A_0(t)}{z} + \frac{A_t(t)}{z-t} + \frac{A_1(t)}{z-1} \right] dz + \frac{A_t(t)}{z-t} dt,$$

fixed parameters: $\pm \frac{\vartheta_l}{2}$... eigenvalues of the residue matrices A_l , $l=0,t,1,\infty$.

(Linear) monodromy representation:

$$\rho: \pi_1(\mathbb{CP}^1 \setminus \{0, t, 1, \infty\}, z_0) \to \mathsf{SL}_2(\mathbb{C}),$$

 $\rho(\gamma_l) = M_l, \ l = 0, t, 1, \infty, \text{ have eigenvalues } e_l = e^{\pi i \vartheta_l}, \ e_l^{-1}.$

Trace coordinates on the monodromy manifold:

$$a_I = e_I + e_I^{-1} = \operatorname{tr}(M_I), \ I = 0, t, 1, \infty, \quad X_i = \operatorname{tr}(M_j M_k), \ \{i, j, k\} = \{0, t, 1\}.$$

Fricke relation

$$F(X,a) := X_0 X_t X_1 + X_0^2 + X_t^2 + X_1^2 - \theta_0 X_0 - \theta_t X_t - \theta_1 X_1 + \theta_\infty = 0,$$

with
$$\theta_i = a_i a_{\infty} + a_j a_k$$
, $i = 0, t, 1$, and $\theta_{\infty} = a_0 a_t a_1 a_{\infty} + a_0^2 + a_t^2 + a_1^2 + a_{\infty}^2 - 4$.

The character variety of P_{VI} : $S_{VI}(a) = \{X \in \mathbb{C}^3 : F(X, a) = 0\}.$

Symplectic form
$$\omega_{\mathcal{S}_{VI}} = \frac{dX_j \wedge dX_i}{2\pi i F_k}$$
, (i,j,k) cyclic permutation of $(0,t,1)$.

Non-linear monodromy action on the character variety of P_{VI}

Theorem (Dubrovin, Mazzocco (2000), Iwasaki (2002))

Action of pure braid group on $\pi_1(\mathbb{CP}^1 \setminus \{0,t,1,\infty\},z_0)$ induces symplectic action on $\mathcal{S}_{VI}(\theta)$ which fixes the singularities of $\mathcal{S}_{VI}(\theta)$, and whose restriction on the smooth locus represents faithfully the nonlinear monodromy of P_{VI} .

$$g_{ij}^{\circ 2}: X_i \mapsto X_i - F_i + X_k F_j, \qquad \qquad F_j := \frac{dF}{dX_j}, \ X_j \mapsto X_j - F_j, \ X_k \mapsto X_k.$$

Lines on S_{VI}

 S_{VI} is a cubic surface with 24 *lines* (counting multiplicity) + 3 *lines at infinity*. Explicit formulas [K.].

Lines on S_{VI}

 S_{VI} is a cubic surface with 24 lines (counting multiplicity) + 3 lines at infinity. Explicit formulas [K.].

Assuming each M_l diagonalizable, $l=0,t,1,\infty$, it determines 2 invariant subspaces of the solution space, associated to the eigenvalues e_l , e_l^{-1} .

Theorem (K.)

Each pair $\{M_I, M_m\}$ gives rise to 4 different mixed bases (up to rescaling).

Associated are 4 lines, each corresponds to degeneracy of one mixed basis.

Lines on S_{VI}

 S_{VI} is a cubic surface with 24 lines (counting multiplicity) + 3 lines at infinity. Explicit formulas [K.].

Assuming each M_l diagonalizable, $l=0,t,1,\infty$, it determines 2 invariant subspaces of the solution space, associated to the eigenvalues e_l , e_l^{-1} .

Theorem (K.)

Each pair $\{M_I, M_m\}$ gives rise to 4 different mixed bases (up to rescaling).

Associated are 4 lines, each corresponds to degeneracy of one mixed basis.

- \triangleright Generalizes to P_1, \ldots, P_V .
- ▶ Intersection points: *special solutions* (pole-free on some "large" domains).

Joint project with E. Paul, J.-P. Ramis.

The confluence $P_{VI} \rightarrow P_{V}$

Change of variables $t\mapsto 1+\epsilon t, \quad \vartheta_t\mapsto \frac{1}{\epsilon}, \quad \vartheta_1\mapsto -\frac{1}{\epsilon}+\tilde{\vartheta}_1,$

Confluent family of connections depending on ϵ

$$\nabla_{\textit{conf}} = d - \Big[\frac{\textit{A}_{\mathbf{0}}(\textit{t})}{\textit{z}} + \frac{\textit{A}_{\mathbf{1}}^{(\mathbf{0})}(\textit{t})}{(\textit{z}-1)(\textit{z}-1-\epsilon\textit{t})} + \frac{\textit{A}_{\mathbf{1}}^{(\mathbf{1})}(\textit{t})}{\textit{z}-1}\Big]d\textit{z} + \frac{\textit{A}_{\mathbf{1}}^{(\mathbf{0})}(\textit{t})}{\textit{t}(\textit{z}-1-\epsilon\textit{t})}d\textit{t}$$

 $A_1^{(0)}$ has eigenvalues $\pm \frac{t}{2}$.

Theorem (Hurtubise, Lambert, Rousseau (2012 & 13), Parise (2001))

For $\epsilon \in \mathsf{E}_+$, resp. E_- (the same sectors as before!) a branch of the normalized mixed solution basis associated to the eigenvalues $e_1^{-1} = e^{\frac{\pi i}{\epsilon} - \pi i \tilde{\vartheta}_1}$ and $e_t = e^{\frac{\pi i}{\epsilon}}$, resp. e_1 and e_t^{-1} , converges as $\epsilon \to 0$ (uniformly on some domains $z \in \mathsf{Z}_+^{\bullet}(\epsilon)$) to each of the sectorial solution bases at the irregular singularity z = 1 for $\epsilon = 0$.

The confluence $P_{VI} \rightarrow P_{V}$

 $\text{Change of variables} \ \ t \mapsto 1 + \epsilon t, \quad \vartheta_t \mapsto \frac{1}{\epsilon}, \quad \vartheta_1 \mapsto -\frac{1}{\epsilon} + \tilde{\vartheta}_1,$

Confluent family of connections depending on ϵ

$$\nabla_{conf} = d - \Big[\frac{A_{\mathbf{0}}(t)}{z} + \frac{A_{\mathbf{1}}^{(\mathbf{0})}(t)}{(z-1)(z-1-\epsilon t)} + \frac{A_{\mathbf{1}}^{(\mathbf{1})}(t)}{z-1}\Big]dz + \frac{A_{\mathbf{1}}^{(\mathbf{0})}(t)}{t(z-1-\epsilon t)}dt$$

 $A_1^{(0)}$ has eigenvalues $\pm \frac{t}{2}$.

Theorem (Hurtubise, Lambert, Rousseau (2012 & 13), Parise (2001))

For $\epsilon \in \mathsf{E}_+$, resp. E_- (the same sectors as before!) a branch of the normalized mixed solution basis associated to the eigenvalues $e_1^{-1} = e^{\frac{\pi i}{\epsilon} - \pi i \vec{\vartheta}_1}$ and $e_t = e^{\frac{\pi i}{\epsilon}}$, resp. e_1 and e_t^{-1} , converges as $\epsilon \to 0$ (uniformly on some domains $z \in \mathsf{Z}_+^{\bullet}(\epsilon)$) to each of the sectorial solution bases at the irregular singularity z=1 for $\epsilon=0$.

Decomposition of (linear) monodromy: we restrict to $\epsilon \in \mathsf{E}_+$

$$M_t(\epsilon) = N_t(\epsilon) S_2(\epsilon) = \left(\begin{smallmatrix} e_t & e_t s_2 \\ 0 & \frac{1}{e_t} \end{smallmatrix}\right), \qquad M_1(\epsilon) = S_1(\epsilon) N_1(\epsilon) = \left(\begin{smallmatrix} e_1 & 0 \\ e_1 s_1 & \frac{1}{e_1} \end{smallmatrix}\right),$$

where the *unfolded Stokes matrices* $S_1(\epsilon) = \begin{pmatrix} 1 & 0 \\ s_1 & 1 \end{pmatrix}$, $S_2(\epsilon) = \begin{pmatrix} 1 & s_2 \\ 0 & 1 \end{pmatrix}$ converge as $\epsilon \to 0$, while the *formal monodromies* $N_j = \begin{pmatrix} e_j & 0 \\ 0 & \frac{1}{e_j} \end{pmatrix}$ diverge.

Wild character variety

Coordinates on the wild monodromy manifold of P_V [van der Put, Saito (2009)]

$$\begin{split} a_0 &= \operatorname{tr}(M_0) = e_0 + e_0^{-1}, \quad \tilde{e}_1 = e^{\pi i \tilde{\vartheta}_1} = e_t e_1, \quad a_\infty = \operatorname{tr}(M_\infty) = e_\infty + e_\infty^{-1}, \\ \tilde{X}_0 &= (M_0)_{22}, \quad \tilde{X}_1 = \operatorname{tr}(M_0 M_\infty), \quad \tilde{X}_\infty = (M_\infty)_{22}. \end{split}$$

Same choice in the confluent situation.

Wild Fricke relation:

$$\tilde{F}(\tilde{X},\tilde{\theta}) := \tilde{X}_0 \tilde{X}_1 \tilde{X}_{\infty} + \tilde{X}_0^2 + \tilde{X}_{\infty}^2 - \tilde{\theta}_0 \tilde{X}_0 - \tilde{\theta}_1 \tilde{X}_1 - \tilde{\theta}_{\infty} \tilde{X}_{\infty} + \tilde{\theta}_t = 0,$$

 $\text{where} \ \ \tilde{\theta}_0 = a_0 + \tilde{e}_1 a_\infty, \quad \tilde{\theta}_1 = \tilde{e}_1, \quad \tilde{\theta}_\infty = a_\infty + \tilde{e}_1 a_0, \quad \tilde{\theta}_t = 1 + \tilde{e}_1 a_0 a_\infty + \tilde{e}_1^2.$

Wild character variety [Boalch (2014)]:

$$\mathcal{S}_V(\tilde{ heta}) = \{ \tilde{X} \in \mathbb{C}^3 : \tilde{F}(\tilde{X}, \tilde{ heta}) = 0 \}$$

Symplectic form: $\tilde{\omega}_{S_V} = \frac{d\tilde{X}_i \wedge d\tilde{X}_j}{2\pi i \tilde{F}_b}$, (i,j,k) cyclic permutation of $(0,1,\infty)$.

Confluence of character varieties

Theorem (K.)

For each $\epsilon \in E_+ \smallsetminus \{0\}$, the change of coordinates on the monodromy manifold

$$(\mathcal{S}_{VI}(\theta), \omega_{\mathcal{S}_{VI}}) \to (\mathcal{S}_{V}(\tilde{\theta}), \omega_{\mathcal{S}_{V}})$$

$$X(\epsilon) \mapsto \tilde{X},$$

where $X(\epsilon)$ are the trace coordinates, is a birational symplectic map (depending on ϵ), which is a blow-down of the line in \mathcal{S}_{VI} that corresponds to degeneracy of the mixed basis of Hurtubise–Lambert–Rousseau.

Confluence of character varieties

Theorem (K.)

For each $\epsilon \in E_+ \smallsetminus \{0\}$, the change of coordinates on the monodromy manifold

$$(\mathcal{S}_{VI}(\theta), \omega_{\mathcal{S}_{VI}}) \to (\mathcal{S}_{V}(\tilde{\theta}), \omega_{\mathcal{S}_{V}})$$

$$X(\epsilon) \mapsto \tilde{X},$$

where $X(\epsilon)$ are the trace coordinates, is a birational symplectic map (depending on ϵ), which is a blow-down of the line in S_{VI} that corresponds to degeneracy of the mixed basis of Hurtubise–Lambert–Rousseau.

Theorem/Conjecture (K., Paul, Ramis)

All the confluent degenerations of character varieties of Painlevé equations happen through a blow-down of a line.

Action of the nonlinear wild monodromy on \mathcal{S}_V

- ightharpoonup transfer the braid group action from S_{VI} to S_{V} ,
- ightharpoonup discretize: replace the divergent $e^{\frac{2\pi i}{\epsilon}}$ by a new parameter $\kappa \in \mathbb{C}^*$,
- express the action of the nonlinear Stokes operators and of the nonlinear exponential torus on the wild character variety of P_V.

The nonlinear wild monodromy pseudogroup of P_V acts on $S_V(\tilde{\theta})$ by birational symplectic transformations, which fix the singularities of $S_V(\tilde{\theta})$, and whose restriction to the smooth locus of $S_V(\tilde{\theta})$ represent it faithfully.

The nonlinear wild monodromy pseudogroup of P_V acts on $S_V(\tilde{\theta})$ by birational symplectic transformations, which fix the singularities of $S_V(\tilde{\theta})$, and whose restriction to the smooth locus of $S_V(\tilde{\theta})$ represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the Hamiltonian vector field $\frac{1}{\tilde{X}_0} \left(\tilde{F}_1 \frac{\partial}{\partial \tilde{X}_\infty} - \tilde{F}_\infty \frac{\partial}{\partial \tilde{X}_1} \right)$, with $H_0 = \frac{1}{2\pi i} \log \tilde{X}_0 + \frac{\vartheta_0}{2}$. Its time- α -flow map is

$$\begin{split} \textbf{\textit{t}}(\,\cdot\,; e^{\alpha}) : \quad & \tilde{X}_0 \mapsto \tilde{X}_0, \\ & \tilde{X}_1 \mapsto \tilde{X}_1 - (1 - e^{-\alpha}) \frac{\tilde{F}_{\infty}}{\tilde{X}_0} + (2 - e^{\alpha} - e^{-\alpha}) \frac{\tilde{F}_1}{\tilde{X}_0^2}, \\ & \tilde{X}_{\infty} \mapsto \tilde{X}_{\infty} - (1 - e^{\alpha}) \frac{\tilde{F}_1}{\tilde{X}_0}. \end{split}$$

The nonlinear wild monodromy pseudogroup of P_V acts on $S_V(\tilde{\theta})$ by birational symplectic transformations, which fix the singularities of $S_V(\tilde{\theta})$, and whose restriction to the smooth locus of $S_V(\tilde{\theta})$ represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the Hamiltonian vector field $\frac{1}{\tilde{X}_0} \left(\tilde{F}_1 \frac{\partial}{\partial \tilde{X}_\infty} - \tilde{F}_\infty \frac{\partial}{\partial \tilde{X}_1} \right)$, with $H_0 = \frac{1}{2\pi i} \log \tilde{X}_0 + \frac{\vartheta_0}{2}$. Its time- α -flow map is

$$\begin{split} \boldsymbol{t}(\,\cdot\,;\boldsymbol{e}^{\alpha}) : \quad & \tilde{X}_{0} \mapsto \tilde{X}_{0}, \\ & \tilde{X}_{1} \mapsto \tilde{X}_{1} - (1 - \boldsymbol{e}^{-\alpha}) \frac{\tilde{F}_{\infty}}{\tilde{X}_{0}} + (2 - \boldsymbol{e}^{\alpha} - \boldsymbol{e}^{-\alpha}) \frac{\tilde{F}_{1}}{\tilde{X}_{0}^{2}}, \\ & \tilde{X}_{\infty} \mapsto \tilde{X}_{\infty} - (1 - \boldsymbol{e}^{\alpha}) \frac{\tilde{F}_{1}}{\tilde{X}_{0}}. \end{split}$$

ii) The formal monodromy acts as $m{n}(ilde{X}) = m{t}(ilde{X}; rac{ ilde{X}_0^4}{ ilde{\epsilon}_1^2})$.

The nonlinear wild monodromy pseudogroup of P_V acts on $\mathcal{S}_V(\tilde{\theta})$ by birational symplectic transformations, which fix the singularities of $\mathcal{S}_V(\tilde{\theta})$, and whose restriction to the smooth locus of $\mathcal{S}_V(\tilde{\theta})$ represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the Hamiltonian vector field $\frac{1}{\tilde{X}_0} \left(\tilde{F}_1 \frac{\partial}{\partial \tilde{X}_\infty} - \tilde{F}_\infty \frac{\partial}{\partial \tilde{X}_1} \right)$, with $H_0 = \frac{1}{2\pi i} \log \tilde{X}_0 + \frac{\vartheta_0}{2}$. Its time- α -flow map is

$$\begin{split} \textbf{\textit{t}}(\,\cdot\,;\,e^{\alpha}): \quad & \tilde{X}_0 \mapsto \tilde{X}_0, \\ & \tilde{X}_1 \mapsto \tilde{X}_1 - (1 - e^{-\alpha}) \frac{\tilde{F}_{\infty}}{\tilde{X}_0} + (2 - e^{\alpha} - e^{-\alpha}) \frac{\tilde{F}_1}{\tilde{X}_0^2}, \\ & \tilde{X}_{\infty} \mapsto \tilde{X}_{\infty} - (1 - e^{\alpha}) \frac{\tilde{F}_1}{\tilde{X}_0}. \end{split}$$

- ii) The formal monodromy acts as $m{n}(ilde{X}) = m{t}(ilde{X}; rac{ ilde{X}_0^4}{\hat{e}_s^2}).$
- iii) The Stokes operators act as $\mathbf{n}^{\circ (-1)} \circ \mathbf{s}_1 \circ \mathbf{n} : \ldots$, and $\mathbf{s}_2 : \ldots$

The nonlinear wild monodromy pseudogroup of P_V acts on $S_V(\tilde{\theta})$ by birational symplectic transformations, which fix the singularities of $S_V(\tilde{\theta})$, and whose restriction to the smooth locus of $S_V(\tilde{\theta})$ represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the Hamiltonian vector field $\frac{1}{\tilde{X}_0} \left(\tilde{F}_1 \frac{\partial}{\partial \tilde{X}_\infty} - \tilde{F}_\infty \frac{\partial}{\partial \tilde{X}_1} \right)$, with $H_0 = \frac{1}{2\pi i} \log \tilde{X}_0 + \frac{\vartheta_0}{2}$. Its time- α -flow map is

$$\begin{split} \boldsymbol{t}(\,\cdot\,;\boldsymbol{e}^{\alpha}) : \quad & \tilde{X}_{0} \mapsto \tilde{X}_{0}, \\ & \tilde{X}_{1} \mapsto \tilde{X}_{1} - (1 - \boldsymbol{e}^{-\alpha}) \frac{\tilde{F}_{\infty}}{\tilde{X}_{0}} + (2 - \boldsymbol{e}^{\alpha} - \boldsymbol{e}^{-\alpha}) \frac{\tilde{F}_{1}}{\tilde{X}_{0}^{2}}, \\ & \tilde{X}_{\infty} \mapsto \tilde{X}_{\infty} - (1 - \boldsymbol{e}^{\alpha}) \frac{\tilde{F}_{1}}{\tilde{X}_{0}}. \end{split}$$

- ii) The formal monodromy acts as $m{n}(ilde{X}) = m{t}(ilde{X}; rac{ ilde{X}_0^4}{\hat{\epsilon}_1^2})$.
- iii) The Stokes operators act as $\mathbf{n}^{\circ (-1)} \circ \mathbf{s}_1 \circ \mathbf{n} : \ldots$, and $\mathbf{s}_2 : \ldots$
- iv) The total monodromy operator acts as

$$egin{aligned} m{s}_2 \circ m{s}_1 \circ m{n} &= g_{0\infty}^{\circ 2}: & ilde{X}_0 \mapsto ilde{X}_0 - ilde{F}_0, \ & ilde{X}_1 \mapsto ilde{X}_1, \ & ilde{X}_\infty \mapsto ilde{X}_\infty - ilde{F}_\infty + ilde{X}_1 ilde{F}_0. \end{aligned}$$