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(a) Painlevé equations (b) Isomonodromic deformations

[Ohyama, Okumura (2006), Chekhov, Mazzocco, Roubtsov (2017)]

Goal: transfer knowledge along the diagram

Problem: divergence on both sides of the Riemann—Hilbert correspondence



Nonlinear Monodromy

Okamoto—Painlevé system:

dq _ O0H,(q,p,t) dp _ _0H,(q,p,t) TR

Pre g op dt oq

leaves are transverse to the fibration (g, p, t) — t.

Okamoto's completion of the phase space:

1. leaves transverse to each fiber M, = Okamoto’s space of initial conditions,
endowed with the symplectic form w = dg A dp,

2. Geometric Painlevé property:
every leaf is a covering of CP*~ Sing(P,).
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Pv/.' Sing(Pw) = {0, 1,00}
> represented by explicit algebraic action of a braid group on a character variety
[Dubrovin, Mazzocco (2000), Iwasaki (2002)]

» algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin,
Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]

» monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]



Pv/.' Sing(Pw) = {0, 1,00}
> represented by explicit algebraic action of a braid group on a character variety
[Dubrovin, Mazzocco (2000), Iwasaki (2002)]

» algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin,
Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]

» monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]

Py, ..., Py: missing information — hidden in a nonlinear Stokes phenomenon at the
irregular singularities
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> represented by explicit algebraic action of a braid group on a character variety
[Dubrovin, Mazzocco (2000), Iwasaki (2002)]
» algebraic solutions correspond to finite orbits [Hitchin (1995), Dubrovin,
Mazzocco (2000), Boalch (2003-2010), Lysovyy, Tykhyy (2014)]
» monodromy dynamics & Malgrange irreducibility [Cantat, Loray (2009)]

Py, ..., Py: missing information — hidden in a nonlinear Stokes phenomenon at the
irregular singularities

Conjecture (Ramis (2012))

1. Painlevé property extends to “wild Painlevé property” (Ecalle’s resurgence?)
and monodromy extends to a “wild monodromy” (nonlinear Stokes phenomenon
at irregular singularities),

2. Galoisian significance of the wild monodromy (Malgrange—Galois pseudogroup),

3. Riemann—Hilbert correspondence algebrizes everything (wild monodromy
dynamics on wild character variety is rational and depends rationally on the

parameters).



Non-linear Stokes phenomenon of Py

The Okamoto—Painlevé system of (non-degenerate) Py near (g, p, t) = (0,0, c0):

. 2dq OHy(q,p,x™ 1) 2dp OHy(q,p,x 1) -1
(*) Py: xX“—=——7"—"T— X' == —F—, x=1t
dx op dx dq

Theorem (Takano (1983), Shimomura (1983))
There exists a pair of sectorial transversely symplectic
transformations (Z) =V*(u,x), |ul<d, xeX®,

e = a, v, bringing (x) to a formal normal form

xzd%u: (1—(2190+1§1—1)x—|—4xu1uz)(;_ol)u. X"
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Canonical 2-parameter family of solutions
1 -
o e x x—(@P0+I1—1)+acicr >
)

(Lo =vemouiio.  u(xic) :< ]

ae * x(290+91—1)—4cic2

c € (C?,0) ...local coordinate on the space of leaves over X*, @ = a, w.

¢ = 0: sectorial center manifold solution (pole-free on X*).



Nonlinear wild monodromy pseudogroup of Py

Acts locally on leaves. Generated by:

» Exponential torus: commutative Lie group of analytic symplectic symmetries
of the formal normal form

Ta(c) = (

ec(crc2)
n). acoeo),

e—alac),,
Formal monodromy u®(e*™'x; ¢) = u®(x; N(c)),

N(c) = T27ri(—219°—1§1+4c152)(c)7
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» Monodromy:

(D)exie) = (R) MA@, M) = S20510N(e),



The confluence Py, — Py
tvi =1+ etv, Devi =2 ﬁl,V’:*%Jﬂg‘l,v, x=2%+e

€’ ty

Confluent system:

dq OH(q,p,x,€) dp 9H(q,p,x;€)
* — —_———— — _—= —
(*) x(x —€)— v x(x —€)— 2

Theorem (K. (2016))

There exist “sectorial” transversely symplectic transformations ( Z) =V (u,x,¢€)

on a parametric family of domains |u] < §, x € X% (¢€), e € Ex, e = a, ¥,
bringing (*) to a confluent formal normal form

x(x— e)% = (1— € — (x— €)o — x(Fo+1U1—1) + 2(2x— €)U1U2)(: _01) u



The confluence Py, — Py,

t =1+ ety, Yevi=21, Yrv=-1+dv, x= %Jre,
Confluent system:
d OH(q,p,x, d 8H(q,p,x,
(%) X(X*e)fq zf(qipm’ X(Xfe)—P _ (cqipxe).
dx op dx aq

Theorem (K. (2016))
There exist “sectorial” transversely symplectic transformations ( Z) =V (u,x,¢€)

on a parametric family of domains |u] < §, x € X% (¢€), e € Ex, e = a, ¥,
bringing (*) to a confluent formal normal form

x(x— e)% = (1— € — (x— €)o — x(Fo+1U1—1) + 2(2x— €)U1U2)(: _01) u

L]
. . . q+

Canonical 2-parameter family of solutions: (p. )(x, €¢)=WVi(,x,e)oul(x,ec),
b

where
T 19 9o-%

. o E X e+l 190+2C1C2(X7 6)6 1—29¢9 191+2clcz,
ul(x,ec)= ( E’l)’ E(x,e;ac) = . )
c2 ef;X72‘l907‘l9171+4C2627 e=0.
c € (C?,0) ...local coordinate on the space of leaves over X%.

c = 0: special solution (pole-free on X%.).



Unfolded Stokes operators S1,+, S2,+, formal monodromy Ngo, N, N.



Decomposition of monodromy

For € € E;~ {0}, xo € X%, the monodromy around x = 0 and x = € decomposes as:
Mg,+ = N:(_l) o Sl,+ o N7 M2+ = 521+ © N€7

where the unfolded Stokes operators S; +(c, €) tend to the non-linear Stokes

operators Si(c,0) of Pv when ¢ — 0, and the formal monodromies

2

i . 2 B ~
%—21\'1(190—2c1c2)cl e%—zm(ﬁo-wl—zclcz)cl
) N€ (C’ E) = )

E%Jrzwi(ﬂo—z‘:l:z) e—%+2ni(ﬂ°+01—2clcz)

No(c,€) = (e

Cc2 2

belong to the exponential torus.



Accumulation of monodromy

Discretization along sequences {€n}nc+n C Ex~{0}

2mi

1= % +n, st.k:=ec €C"is constant.

Accumulation to a 1-parameter family depending on & of wild monodromy operators
Mg (c,en) = Mo (c; k) = Ne(15)° T 0 S1.0 N(c),
M:+(C, €n) = M:+(c; k) =Sy 0Nc; k),

where

. 1 27i(—Po+2e1c2) ¢y . HSZWV'(719071§1+2C152)61
i) = (* R = ,

e2mi(Po—2c1c2) y %ezwi(ﬂoﬂhﬂqq)q

and N = No(k) o N.(k), are elements of the exponential torus.
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i) = (* R = ,

e2mi(Po—2c1c2) y %ezwi(ﬂoﬂhﬂqq)q

and N = No(k) o N.(k), are elements of the exponential torus.

The Stokes operators can be now expressed e.g. as

N°CYoS10N(c) = I\’J/I:;Jr(c; /{)L Sa(c) = M, (c; k)

_e2mi(—9g+2c1¢2)’ e2mi(Dg+d1 —2¢c103)”

while the infinitesimal “generator” (10, — c20c,) of the exponential torus is given by

¢ = —(Kﬁl\ﬂ/ig7+(.; K)) o (Ma+(c; m))o(fl).



Character variety of Py

Flat traceless meromorphic connection on the trivial bundle on CP*

Vvy=d-— [Ao(f) + Ae(t) + Al(t)}dz—‘,— Ar(t)

z z—t z—1

dt,

z—t

fixed parameters: £, . eigenvalues of the residue matrices A;, I =0, t, 1, co.
2 g s by by
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Character variety of Py

Flat traceless meromorphic connection on the trivial bundle on CP*

Ao(t) + Ae(t) + A1(1)

z z—t z—1

Ae(t)

z—t

Vv,zd—[ ]dz+ dt,

fixed parameters: :I:%. .. eigenvalues of the residue matrices A, | =0,t,1, co.
20

(Linear) monodromy representation:

p: m(CP*~{0, £, 1,00}, 20) — SLa(C), A \
1 0 t

p(v) =M, 1=0,t,1,00, have eigenvalues ¢ = e, e . 1

Trace coordinates on the monodromy manifold:
a=e+e t=tr(M), I=0,t1,00, Xi=tr(MMy), {i,j, k} ={0,¢t,1}.
Fricke relation
F(X,a) == XoXe X1 + X§ + XZ + X? — 00 Xo — 0:Xe — 01.X1 + 0o = 0,
with 0; = ajace + ajak, i = 0,t,1, and O = agaraiace + ag + a: + a3 + a2 — 4.
The character variety of Py;: Syi(a) = {X € C*: F(X,a) = 0}.

. dXiAdX; . . .
Symplectic form ws,, = 2J/‘\F . (1,J, k) cyclic permutation of (0, t,1).
i Fy




Non-linear monodromy action on the character variety of Py,

20 20
20
t 01 /N 0 1\t
( 0t 1 )9?12
................ 'Y @-==smmcmmmcafnaaa
957 t=0 t=1
Z0 20

Theorem (Dubrovin, Mazzocco (2000), Iwasaki (2002))
Action of pure braid group on w1 (CP*~{0,t,1,00}, z0) induces symplectic action on
Svi(0) which fixes the singularities of S\i(0), and whose restriction on the smooth
locus represents faithfully the nonlinear monodromy of Py;.
87" Xi = Xi — Fi + XF, Fi= 2,
X = X F,
Xk — Xk,



Lines on Sy,

Svi is a cubic surface with 24 lines (counting multiplicity) 4+ 3 lines at infinity.
Explicit formulas [K.].
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Assuming each M, diagonalizable, / =0, t,1, 0o, it determines 2 invariant subspaces
of the solution space, associated to the eigenvalues ¢, efl.

Theorem (K.)

Each pair {M;, M} gives rise to 4 different mixed bases 20
(up to rescaling).
Associated are 4 lines, each corresponds to degeneracy of

one mixed basis. 0t 1 o©



Lines on Sy,

Svi is a cubic surface with 24 lines (counting multiplicity) 4+ 3 lines at infinity.
Explicit formulas [K.].

Assuming each M, diagonalizable, / =0, t,1, 0o, it determines 2 invariant subspaces
of the solution space, associated to the eigenvalues ¢, efl.

Theorem (K.)

Each pair {M;, M} gives rise to 4 different mixed bases 20

(up to rescaling).

Associated are 4 lines, each corresponds to degeneracy of

one mixed basis. 0 ¢t 1 o
» Generalizes to P, ..., Py.

> Intersection points: special solutions (pole-free on some “large” domains).

Joint project with E. Paul, J.-P. Ramis.



The confluence Py, — Py,

Change of variables t+— 1+ et, ¢+ %, W — f% + 51,

Confluent family of connections depending on ¢

Ao(t) AL r) n AN (1)

z (z—1)(z—1—¢t) z—1

vconfzd—[ ]dz+ dt

t(z—1—et)

A has eigenvalues +3.

Theorem (Hurtubise, Lambert, Rousseau (2012 & 13), Parise (2001))
For e € E4, resp. E_ (the same sectors as before!) a branch of the normalized
mixed solution basis associated to the eigenvalues efl —ec ™1 gpd e = e%,

resp. e1 and e, converges as ¢ — O (uniformly on some domains z € Z%(e))
to each of the sectorial solution bases at the irregular singularity z =1 for ¢ = 0.
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Change of variables t+— 1+ et, ¢+ %, W — f% + 51,

Confluent family of connections depending on ¢

Ao(t) AL r) n AN (1)

z (z—1)(z—1—¢t) z—1

vconfzd—[ ]dz+ dt

t(z—1—et)

A has eigenvalues +3.

Theorem (Hurtubise, Lambert, Rousseau (2012 & 13), Parise (2001))
For e € Ey, resp. E_ (the same sectors as before!) a branch of the normalized
mixed solution basis associated to the eigenvalues efl = eﬂ?i*”“;1 and e; = eﬂ?i,
resp. e1 and e, converges as ¢ — O (uniformly on some domains z € Z%(e))
to each of the sectorial solution bases at the irregular singularity z =1 for ¢ = 0.

Decomposition of (linear) monodromy: we restrict to € € E4

Me(e) = Ne(€)Sa(e) = (i; 7) . Ma(e) = Su(e)Ma(e) = (ej; 2) ,

e

1

Ss1

where the unfolded Stokes matrices Si(€) = ( 2) So(e) = (; 512) converge as
0
1

1 ) diverge.

)
€ — 0, while the formal monodromies N; = (é

K



Wild character variety

Coordinates on the wild monodromy manifold of Py [van der Put, Saito (2009)]

-1 ~ i9 -1
ao=tr(Mo) =e+e , & =e"""=ee, aw=1tr(Mx)=ex+es,

Xo = (Mo)z2, Xi=tr(MoMss), Xoo = (Moo)2.
Same choice in the confluent situation.
Wild Fricke relation:
F(X,0) = XoXiXoo + X5 + X2, — 00Xo — 01X — 0o X + 6, = 0,
where o = a0 + é1dc0, 6, = é, Oso = 00 + éiao, 0 =1+ 130800 + &2,
Wild character variety [Boalch (2014)]:
Sv(f) ={X eC: F(X,0) =0}

Symplectic form: &s,, = dXiAc_’Xj, (i,j, k) cyclic permutation of (0,1, c0).

27miFy




Confluence of character varieties

Theorem (K.)

For each € € E; ~{0}, the change of coordinates on the monodromy manifold
(SV’(G)’W‘SVI) - (SV(5)7‘*}5V)
X(e) — X,
where X(€) are the trace coordinates, is a birational symplectic map (depending on

€), which is a blow-down of the line in Sv; that corresponds to degeneracy of the
mixed basis of Hurtubise—Lambert—Rousseau.



Confluence of character varieties

Theorem (K.)

For each € € E; ~{0}, the change of coordinates on the monodromy manifold

(SV’(G)’W‘SVI) - (SV(5)7WSV)
X(e) — X,
where X(€) are the trace coordinates, is a birational symplectic map (depending on

€), which is a blow-down of the line in Sv; that corresponds to degeneracy of the
mixed basis of Hurtubise—Lambert—Rousseau.

Theorem/Conjecture (K., Paul, Ramis)

All the confluent degenerations of character varieties of Painlevé equations happen
through a blow-down of a line.



Action of the nonlinear wild monodromy on Sy

» transfer the braid group action from Sy, to Sy,

» discretize: replace the divergent e < by a new parameter x € C*,

» express the action of the nonlinear Stokes operators and of the nonlinear
exponential torus on the wild character variety of Py .



Theorem (K.)

The nonlinear wild monodromy pseudogroup of Py acts on Sy(0) by birational

symplectic transformations, which fix the singularities of Sy(¢), and whose
restriction to the smooth locus of Sy(8) represent it faithfully.



Theorem (K.)

The nonlinear wild monodromy pseudogroup of Py acts on Sy(0) by birational
symplectic transformations, which fix the singularities of Sy(¢), and whose
restriction to the smooth locus of Sy(8) represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the
Hamiltonian vector field - (F. 9 F. with Ho = 5% log Xo + 2.
0

%o oc&)r

Its time-a-flow map is
t(-;e*): Xo— Xo,

X Ko - (1-e )k +(2—ea—e—a)§;2,

Koo 1 Koo — (1 - €) 2.



Theorem (K.)

The nonlinear wild monodromy pseudogroup of Py acts on Sy(0 ) by birational
symplectic transformations, which fix the singularities of Sv(6), and whose
restriction to the smooth locus of Sy(8) represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the
gL 3 1 (F 0 o

Hamiltonian vector field - (F1 55 — Foo R) with Ho = 5 log Xo + %2.

Its time-a-flow map is

t(-;e%): Xo — X,

G Xa-(1-e )2 t2-e"—e)p
V/ v ay F
Koo v Koo = (1— ") 2.

ii) The formal monodromy acts as n(X) = t(X; X3 ).




Theorem (K.)

The nonlinear wild monodromy pseudogroup of Py

acts on Sy (0) by birational

symplectic transformations, which fix the singularities of Sy (), and whose

restriction to the smooth locus of Sy (f) represent

it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the

Hamiltonian vector field )%0 (F1 0;?00 — Foe &)
Its time-a-flow map is
t(-;e*): Xo— Xo,
K Xa-(1-e )=t (2-e
Koo 1 Koo — (1 - €) 2.
ii) The formal monodromy acts as n(X) = t(X; f—g

iii) The Stokes operators act as n°Yosion:..

with Ho = 5 log Xo + %2.
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Theorem (K.)

The nonlinear wild monodromy pseudogroup of Py acts on Sy(0 ) by birational
symplectic transformations, which fix the singularities of Sv(6), and whose
restriction to the smooth locus of Sy(8) represent it faithfully.

i) The infinitesimal generator of the exponential torus corresponds to the
Hamiltonian vector field )%0 (F1 with Ho = 5 log Xo + %2.

o o
sis ~ Feoagg):
Its time-a-flow map is

t(-;e%): Xo — X,
G Xa-(1-e )2 t2-e"—e)p

Koo 1 Koo — (1 - €) 2.

ii) The formal monodromy acts as n(X) = t(X; );Lg‘)
1

iii) The Stokes operators act as n*"Yosion:...,andss:....
iv) The total monodromy operator acts as

52oslon:g§§o: )?o>—>)?o—ﬁo,
)?1)—))?1,
)?wH)?m_ﬁw+x1ﬁ0-



