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1 Finite Weyl Groups

1.1 Set Up

Let g; be a simple finite dimensional Lie algebra over C of rank [, hy C gy a
Cartan subalgebra, and Ry C b} be the root system of g with respect to b;.
Fix a root basis [y = {a; (1 < i <)} C b} and the corresponding coroot
basis IV = {« (1 <i <)} C by. Let

Py ={X e bi|Ma)) € Z Vo €11},
Pl ={)e Pf\a)) e NVa, € T}

be the weight lattice and the monoid of dominant integral weights. We note
the ¢th fundamental weight by A;, i.e., A; € Py such that Ai(oz;-/) =0;,. We

set p = 22:1 A;.



1.2 Group algebra C[Pf| and their W;-invariants

We recall some basic facts about the Wy-invariants of the group algebra

C[Py] = {Z cxe’lex = 0 for all but finite A},
y

where the action of Wy is given by w.e* := ev™)

To describe a C-basis of C[P;]"f, we introduce W, skew-invariants as
follows: for A € Py, set

Ay = Z det(w)e*™.

wEWf

Fact 1.1. 1. Wy(\) NPy #0.
2. (Skew-symmetry) Ayy = det(w)Ay.

Hence, we may work with A € PJT . Moreover, if 7,,(A\) = 0 for some
1 <1 <, it is clear from the skew-symmetry that Ay = 0. Hence, we may
restrict ourselves to A € ij t= P]fr + p without loss of generality.
For A € P}, set
o = Do
A A,

It turns out that x, € C[Py] by Weyl’s character formula. In particular, we
see that

[0}

X has the form ZQGQ} Cr_al 7,
where Q}“ = NII is the monoid generated by II.

Hence, we have

Lemma 1.1. C[P/"7 = @P; Cxx as a vector space.

The ring structure of C[P;]" can be described as follows. By the fact
cited above, it follows that

Theorem 1.2. 1. xa, (1 <@ <) are algebraically independent and

2. (C[P;_]Wf = C[XAl? T 7XA1]‘



2 Affine Weyl groups

2.1 Set Up

Let (-, -) be the scalar multiple of the bilinear on b} induced from the restric-
tion of the Killing form on g; normalized as (o, a) = 2 for any long root a.
Hence, for any a € Ry, the associated coroot o is given by

2
\ *
o = ——qa € .

(ava) hf

Let Aff(hs) the space of affine linear functions on by and L = L(hy) C
Aff(hy) the subgroup of translations. The actions of L on h; and on Aff(hy)
are given by

t(r) =z +t, (t.p)(z) :=p(x —1t) x €h, ¢ € Aff(h).

For ¢ € Aff(hs), we denote by ¢ the linear part of ¢, i.e., ¢ € b}. For a
non-constant o € Aff(hy), let

o = {2 € byla(z) = 0}

be the hyperplane with respect to a and r, the reflection with respect to the
hyperplane 7,. Denoting h, € by by the normal vector to the hyperplane 7,
with the condition a(h,) = 2, the reflection r, is defined by

To(T) =2 — a(z)ha, Ta(P) = ¥ — @(ha)a, x € by, € Aff(by).

Let Ry be an irreducible and reducible finite reduced root system. We
define the affine root system R,; by

Raf = {04 + l|Oé S Rf, l e Z}

The group W,y generated by 7, (o € R,y) is the affine Weyl group. It is
known that W isomorphic to the group Wy x QF, where Q} := ZII" is the
coroot lattice.

2.2 W,-invariants

We shall identify by with its dual b} via the normalize invariant form as in
the preceding subsection.



For A € P; and k € N*, let f); be the function on H x b x C defined by
Farl(r 2, t) == o2V =Lkt (2) 55 AN)T)
We define the action of Q}/ on H x b x C by

1
(7, 2,0) = (1,2 = 77, = (2,9) + 57(7,7)).

It can be checked that
L. fk,k(tw-(ﬁzat)) = fA—k«,,k(T,Z,t), and that

2. a natural action of W on by induces a Wy-action on H x by x C with
respect to which one has f,.(7, 2, t) = fur(T, w1 (2),1).

3. The above two actions define an action of W,; on

A ={F € Hol(H x by x C)|F = Z cxfar for some {catrep,
)\Epf

Now, for A € Py and k € N*, we set

gk,k(,ra 2, t) = Z f)\'f'k%k (T7 Z, t)7

7EQY

which is a (classical) theta function, and

Remark 2.1. Set
May)>0(1<i<)
k .__ i

where 0¥ signifies the highest coroot. It can be checked that for any X € Py,
there exists e € {£1} and p € Cky such that Ayi(T, 2, 1) = A,k (T, 2, 1).

Under these preparations, consider the next problem: A := CO@, .. Ax-

Study the structure of the algebra of invariants AVes,
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Well, the easy part is as follows. Let AV := 143" aY, where 20 aYa)

=1 "1 i=1"

6V, be the dual Coxeter number. For k£ € N* and \ € C’ff we set

Axipranv (T, 2,1)
A, pv (T, 2,1)

Xak(T,2,t) ==

Then, a simple calculation shows
Lemma 2.1. A/ = C & @, - @,\ecfjf Cx k-
We remark that
1. this ring A"es has a structure of graded ring graded by k& € N*, and

2. as a graded vector space, A%as is isomorphic to C[ X, - - , X]]
where the degree of each variable X; is defined by a;'.

Here, a3 := 1 by definition. So, a natural question is

Can an isomorphism A%er = C[X, - -, Xj] above as graded vector spaces
be indeed an isomorphism as graded C-algebras ?

2.3 History : Algebraic structure of A"

In 1976, E. Looijenga [L] ‘showed’ that
for any 7 € H, the response to the above question is “YES”

with erreur !

In 1978, I. N. Bernstein and O. Schwarzman [BS] pointed out the erreur
and announced the result in full generality with their ‘sketch of proof’” only
in 2 pages.

By computing explicitly the Jacobian of the fundamental characters
{X01 XAy (1 <@ < 1)}, D. H. Peterson ‘showed’ that the response to
the above question is “YES” for any 7 € H in the case when Ry is of type
Ay, By, C, Dy and of type G5. This result was announced in the paper with V.
Kac [KP] in Appendix 4 (Section 4.10) saying that a detail will appear
elsewhere, which in fact never appears.

Nearly 20 years after their publication of the announcement [BS], J. Bern-
stein and O. Schwarzman in [BS2] published a detailed version of [BS] ex-

cluding type Dl(l) with the excuse saying that

5



this case is covered by a result of D. H. Peterson !
Hence, even now, there is no published proof for this case.......

Remark 2.2. J. Bernstein and O. Schwarzian [BS2] treated also twisted

cases, except for type AS) which had been covered by the computation dur to
D. H. Peterson.

2.4 Application

This result is used when one discuss about the moduli space of semi-stable
G-bundles over a torus E, := C/Z @ 77, where G is a connected and simply-
connected simple algebraic group over C. Indeed, one can show that such
space can be expressed as the quotient

ET Rz Qy/Wf

where the group W acts on the right component, i.e., Q. By the (T)HOEREM,
one sees that this space is isomorphic to the weighted projective space

P(ag,ai, -, ).
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